Readiness to accept Artificial Intelligence (AI): An empirical study on tertiary level students' in Bangladesh

Authors

  • Rozina Akter BGC Trust University Bangladesh https://orcid.org/0000-0002-8700-9838
  • Nawrin Afrin BGC Trust University Bangladesh
  • Mohammad Robiul Islam Fahim BGC Trust University Bangladesh
  • Umma Salma Hoque BGC Trust University Bangladesh

DOI:

https://doi.org/10.20525/ijrbs.v14i6.4303

Keywords:

Artificial Intelligence, Students' Readiness, Application, Awareness, Tertiary-level

Abstract

Our way of life has evolved due to the advent of AI. Artificial intelligence (AI) is already having an impact on many parts of the industry and will likely find additional uses in the future. This research study investigates the students' readiness to adopt AI. An exploratory research design undergirds this investigation. A questionnaire (based on a prior study) survey was used to gather data. The SPSS and AMOS Graphics are used to conduct EFA and CFA. 387 respondents were taken into consideration for the study. In this investigation, the KMO value is 0.839. Factor loading is larger than 0.45, with 22 items. This study extracts five components: educational content (EC), institutional facilities (IF), artificial intelligence awareness (AW), acceptance barriers (AB), and usage/application (AP). The Eigen values of those components are 5.056, 2.420, 1.640, 1.411, and 1.000, explaining 52.4% of the total variation. The CFA model fit findings show that CMIN/DF=2.360, GFI= 0.0.913, AGFI= 0.884, CFI= 0.880, RMSEA=0.05, SRMR=0.05, Hoelter's N returns value at 5% significant level = 195 and at 1% significant level = 210, Chi square= 372.870, df=158, p=0.000. Today, AI may boost tertiary students' productivity. Engaging pupils with technology in our country helps determine their AI interests. The study shows how educational content, institutional facilities, artificial intelligence knowledge, acceptance hurdles, and usage/application affect students' preparedness to adopt AI. This research will help higher education authorities to introduce IT infrastructure, teach students to understand AI technology, and inspire future academics to contribute to this era of intelligent robots.

Downloads

Download data is not yet available.

References

Algerafi, M. A. M., Zhou, H., Alfadda, T., & Wijaya, T. T. (2023). Understanding the factors influencing higher education students' intention to adopt artificial intelligence-based robots. IEEE Access, 11, 99752-99764. https://doi.org/10.1109/ACCESS.2023.3314499 DOI: https://doi.org/10.1109/ACCESS.2023.3314499

Alkhamis, M., Almalki, M., Choukou, M., & Khairallah, F. (2025). Perceived artificial intelligence readiness in medical and health sciences education: A survey study of students in Saudi Arabia. BMC Medical Education, 25. https://doi.org/10.1186/s12909-025-06995-1 DOI: https://doi.org/10.1186/s12909-025-06995-1

Bates, T., Cobo, C., Mariño, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(1), 1-12. https://doi.org/10.1186/s41239-020-00218-x DOI: https://doi.org/10.1186/s41239-020-00218-x

Bedi, K. (2023). AI comics as art: Scientific analysis of the multimedia content of AI comics in education. 46th MIPRO ICT and Electronics Convention (MIPRO), 750-753. https://doi.org/10.23919/MIPRO57284.2023.10159693 DOI: https://doi.org/10.23919/MIPRO57284.2023.10159693

Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Education and Information Technologies, 25, 3443-3463. https://doi.org/10.1007/s10639-020-10159-7 DOI: https://doi.org/10.1007/s10639-020-10159-7

Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510 DOI: https://doi.org/10.1109/ACCESS.2020.2988510

Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education. Educational Technology & Society, 25(1), 28-47.

Coppin, B. (2004). Artificial intelligence illuminated. Jones and Bartlett.

Cox, A. M., Pinfield, S., & Rutter, S. (2019). The intelligent library: Thought leaders' views on the likely impact of artificial intelligence on academic libraries. Library Hi Tech, 37(3), 418-435. https://doi.org/10.1108/LHT-08-2018-0105 DOI: https://doi.org/10.1108/LHT-08-2018-0105

Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results [Doctoral dissertation, Massachusetts Institute of Technology].

Denny, P., Khosravi, H., Hellas, A., Leinonen, J., & Sarsa, S. (2023). Can we trust AI-generated educational content? Comparative analysis of human and AI-generated learning resources. arXiv preprint arXiv:2306.10509.

Druga, S., Otero, N., & Ko, A. J. (2022). The landscape of teaching resources for AI education. Proceedings of the 27th ACM Conference on Innovation and Technology in Computer Science Education, 1, 96-102. https://doi.org/10.1145/3502718.3524782 DOI: https://doi.org/10.1145/3502718.3524782

Falebita, O., & Kok, P. (2024). Artificial intelligence tools usage: A structural equation modeling of undergraduates' technological readiness, self-efficacy and attitudes. Journal for STEM Education Research. https://doi.org/10.1007/s41979-024-00132-1 DOI: https://doi.org/10.1007/s41979-024-00132-1

Ghimire, A., Prather, J., & Edwards, J. (2024). Generative AI in education: A study of educators' awareness, sentiments, and influencing factors. arXiv preprint arXiv:2403.15586. http://arxiv.org/abs/2403.15586 DOI: https://doi.org/10.1109/FIE61694.2024.10892891

Ghulam, Y. (2021). Institutions and firms' technological changes and productivity growth. Technological Forecasting and Social Change, 171, 120993. https://doi.org/10.1016/j.techfore.2021.120993 DOI: https://doi.org/10.1016/j.techfore.2021.120993

Grassini, S. (2023). Shaping the future of education: Exploring the potential and consequences of AI and ChatGPT in educational settings. Education Sciences, 13(7), 692. https://doi.org/10.3390/educsci13070692 DOI: https://doi.org/10.3390/educsci13070692

Herfurth, F., Kirchner, K., Lemke, C., & Anandarajah, L. (2023). Exploring the student perspective: Assessing technology readiness and acceptance for adopting large language models in higher education. European Conference on e-Learning. https://doi.org/10.34190/ecel.22.1.1828 DOI: https://doi.org/10.34190/ecel.22.1.1828

Huang, F., Sing, C., Chiu, T., Teo, T., & Wei, W. (2022). Secondary school students' intentions to learn AI: Testing moderation effects of readiness, social good and optimism. Educational Technology Research and Development, 70, 765-782. https://doi.org/10.1007/s11423-022-10111-1 DOI: https://doi.org/10.1007/s11423-022-10111-1

Ismail, K., Krishnanraw, J., & Ismail, K. (2025). Behavioural intention to use artificial intelligence (AI) among accounting students: Evaluating the effect of technology readiness. Management and Accounting Review. https://doi.org/10.24191/mar.v24i01-17 DOI: https://doi.org/10.24191/MAR.V24i01-17

Jong, M., Qin, J., Dai, Y., Lin, P., Guo, Y., & Chai, C. (2020). Promoting students' well-being by developing their readiness for the artificial intelligence age. Sustainability, 12(16), 6597. https://doi.org/10.3390/su12166597 DOI: https://doi.org/10.3390/su12166597

Kim, N. J., & Kim, M. K. (2022). Teacher's perceptions of using an artificial intelligence-based educational tool for scientific writing. Frontiers in Education, 7, 755914. https://doi.org/10.3389/feduc.2022.755914 DOI: https://doi.org/10.3389/feduc.2022.755914

Kim, S.-W., & Lee, Y. (2020). Development of test tool of attitude toward artificial intelligence for middle school students. The Journal of Korean Association of Computer Education, 23(3), 17-30.

Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: Systematic literature review. International Journal of Educational Technology in Higher Education, 20, 56. https://doi.org/10.1186/s41239-023-00426-1 DOI: https://doi.org/10.1186/s41239-023-00426-1

Liu, H., Li, S., Wu, W., & Zhang, B. (2022). Exploring factors of the willingness to accept AI-assisted learning environments: An empirical investigation based on the UTAUT model and perceived risk theory. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.870777 DOI: https://doi.org/10.3389/fpsyg.2022.870777

Lyons, M., Brewer, G., Chopen, N., Davila, N., Elías, D., Gómez, L. D. R., Velásquez, J., & García, G. G. (2024). Barriers to bystander action in sexual violence in Guatemala: The role of rape myth acceptance. Sexuality & Culture, 28(1), 155-167. https://doi.org/10.1007/s12119-023-10106-x DOI: https://doi.org/10.1007/s12119-023-10106-x

Marzouk, M., & Zaher, M. (2020). Artificial intelligence exploitation in facility management using deep learning. Construction Innovation, 20(4), 609-624. https://doi.org/10.1108/CI-12-2019-0138 DOI: https://doi.org/10.1108/CI-12-2019-0138

Meder, D., Morales, M., Pepperkok, R., Schlapbach, R., Tiran, A., & Van Minnebruggen, G. (2016). Institutional core facilities: Prerequisite for breakthroughs in the life sciences. EMBO Reports, 17(8), 1088-1093. https://doi.org/10.15252/embr.201642857 DOI: https://doi.org/10.15252/embr.201642857

Merikle, P. M. (1984). Toward a definition of awareness. Bulletin of the Psychonomic Society, 22(5), 449-450. https://doi.org/10.3758/BF03333874 DOI: https://doi.org/10.3758/BF03333874

Messer, M., Brown, N. C., Kölling, M., & Shi, M. (2023). Automated grading and feedback tools for programming education: A systematic review. ACM Transactions on Computing Education, 24, 1-43. https://doi.org/10.1145/3578544 DOI: https://doi.org/10.1145/3636515

Nikitaeva, A. Y., & Salem, A.-B. M. (2022). Institutional framework for the development of artificial intelligence in the industry. Journal of Institutional Studies, 14(1), 108-126. https://doi.org/10.17835/2076-6297.2022.14.1.108-126 DOI: https://doi.org/10.17835/2076-6297.2022.14.1.108-126

Pila, A. (2023). Will artificial intelligence overcome teachers that just addresses content? Concilium, 23(14), 393-405. DOI: https://doi.org/10.53660/CLM-1590-23J20

Pinto Dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., Maintz, D., & Baeßler, B. (2019). Medical students' attitude towards artificial intelligence: A multicentre survey. European Radiology, 29(4), 1640-1646. https://doi.org/10.1007/s00330-018-5601-1 DOI: https://doi.org/10.1007/s00330-018-5601-1

Poonpirome, K., Pingmuang, P., Wiwatsiripong, B., Wisnuwong, S., Kanont, K., Khlaisang, J., Simasathien, T., & Songkram, N. (2024). Generative-AI, a learning assistant? Factors influencing higher-ed students' technology acceptance. Electronic Journal of e-Learning. https://doi.org/10.34190/ejel.22.6.3196 DOI: https://doi.org/10.34190/ejel.22.6.3196

Sassis, L., Kefala-Karli, P., Sassi, M., & Zervides, C. (2021). Exploring medical students' and faculty's perception on artificial intelligence and robotics: A questionnaire survey. Journal of Artificial Intelligence for Medical Sciences, 2(1-2), 76-84. https://doi.org/10.2991/jaims.d.210617.002 DOI: https://doi.org/10.2991/jaims.d.210617.002

Shrungare, J. (2023). AI in education. XRDS: Crossroads, The ACM Magazine for Students, 29(3), 63-65. https://doi.org/10.1145/3589657 DOI: https://doi.org/10.1145/3589657

Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on college students' academic learning. Journal of Educational Psychology, 106(2), 331-347. https://doi.org/10.1037/a0034752 DOI: https://doi.org/10.1037/a0034752

Straub, V. J., Morgan, D., Hashem, Y., Francis, J., Esnaashari, S., & Bright, J. (2023). A multidomain relational framework to guide institutional AI research and adoption. *Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society*, 512-519. https://doi.org/10.1145/3600211.3604718 DOI: https://doi.org/10.1145/3600211.3604718

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197-221. https://doi.org/10.1080/00461520.2011.611369 DOI: https://doi.org/10.1080/00461520.2011.611369

Vighio, M., Alblehai, F., Dahri, N., Soomro, R., Al-Rahmi, W., Yahaya, N., & Shutaleva, A. (2024). Investigating AI-based academic support acceptance and its impact on students' performance in Malaysian and Pakistani higher education institutions. Education and Information Technologies, 29, 18695-18744. https://doi.org/10.1007/s10639-024-12599-x DOI: https://doi.org/10.1007/s10639-024-12599-x

Wagner, R. V., & Sherwood, J. J. (1969). The study of attitude change. Brooks/Cole Publishing Company.

Wang, T., Lund, B. D., Marengo, A., Pagano, A., Mannuru, N. R., Teel, Z. A., & Pange, J. (2023). Exploring the potential impact of artificial intelligence (AI) on international students in higher education: Generative AI, chatbots, analytics, and international student success. Applied Sciences, 13(11), 6716. https://doi.org/10.3390/app13116716 DOI: https://doi.org/10.3390/app13116716

Yang, S. J. H., Ogata, H., Matsui, T., & Chen, N.-S. (2021). Human-centered artificial intelligence in education: Seeing the invisible through the visible. Computers and Education: Artificial Intelligence, 2, 100008. https://doi.org/10.1016/j.caeai.2021.100008 DOI: https://doi.org/10.1016/j.caeai.2021.100008

Yang, X., Li, J., Liu, Y., Zhang, X., Li, W., & Li, D. (2024). An explanatory study of factors influencing engagement in AI education at the K-12 level: An extension of the classic TAM model. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-64363-3 DOI: https://doi.org/10.1038/s41598-024-64363-3

Yboa, B., Labrague, L., Aguilar-Rosales, R., & Sabio, J. (2023). Factors influencing student nurses' readiness to adopt artificial intelligence (AI) in their studies and their perceived barriers to accessing AI technology: A cross-sectional study. Nurse Education Today, 130, 105945. https://doi.org/10.1016/j.nedt.2023.105945 DOI: https://doi.org/10.1016/j.nedt.2023.105945

Zapata, L., Bocanegra, J., García, F., Rabanal-León, H., Farroñán, E., Angaspilco, J., & Acosta-Enriquez, B. (2024). Acceptance of artificial intelligence in university contexts: A conceptual analysis based on UTAUT2 theory. Heliyon, 10. https://doi.org/10.1016/j.heliyon. DOI: https://doi.org/10.1016/j.heliyon.2024.e38315

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0

Downloads

Published

2025-08-13

How to Cite

Akter, R., Afrin, N., Mohammad Robiul Islam Fahim, & Umma Salma Hoque. (2025). Readiness to accept Artificial Intelligence (AI): An empirical study on tertiary level students’ in Bangladesh . International Journal of Research in Business and Social Science (2147- 4478), 14(6), 494–503. https://doi.org/10.20525/ijrbs.v14i6.4303

Issue

Section

Related Topics in Social Science