Leveraging the power of human resource analytics for enhanced decision making: opportunities and challenges

Authors

DOI:

https://doi.org/10.20525/ijrbs.v14i6.4276

Keywords:

Human resource management, HR analytics, decision making, challenges, opportunities, human capital theory

Abstract

The fast-changing technological environment compels organisations to make swift and adaptive strategic choices, necessitating the use of tools and systems that can effectively manage complexities, foresee challenges, and capitalise on opportunities; as a result, there is a growing trend towards the adoption of human resource analytics to improve decision-making processes in the ever-evolving field of human resources. Despite the increasing use of HR metrics and analytics in human resource management, HR professionals have been relatively slow to embrace a data-driven approach, and existing research on data-driven decision-making in HRM often lacks the comprehensive frameworks necessary to provide practical guidance for the effective integration of human resource analytics. Hence, this study aims to explore the utilisation of human resource analytics to improve decision-making processes within organisations, highlighting both the potential benefits and the challenges that may arise. A systematic literature review revealed that the adoption of Human Resource Analytics offers organisations significant benefits, such as enhanced decision-making, better alignment with strategic objectives, improved employee experiences, a stronger competitive advantage, and reduced time expenditures. However, challenges persist, including concerns related to data privacy and security, the quality, integrity, and accuracy of data, a lack of data literacy and skills among employees, and inadequate technological infrastructure. To address data security concerns, HR technology providers must adopt robust security measures, including encryption, firewalls, and intrusion detection systems. Additionally, they should develop user-friendly data management systems and analytical tools that enable HR professionals to derive valuable insights from the data effectively.

Downloads

Download data is not yet available.

References

Alam, S. (2024). HR analytics for strategic decisions: Resolving conflicts from a psychological perspective. Research Square, 1-39. https://doi.org/10.21203/rs.3.rs-5344306/v1 DOI: https://doi.org/10.21203/rs.3.rs-5344306/v1

Álvarez-Gutiérreza, F.J., Stone, D.L., Castaño, A.N. & García-Izquierdo, A.L. (2022). Human resources analytics: A systematic review from a sustainable management approach. Journal of Work and Organizational Psychology, 38(3): 129-147. https://doi.org/10.5093/jwop2022a18 DOI: https://doi.org/10.5093/jwop2022a18

Andersen, M.K. (2017). Human capital analytics: the winding road. Journal of Organizational Effectiveness, 133-136. Doi: 10.1108/JOEPP-03-2017-0024 DOI: https://doi.org/10.1108/JOEPP-03-2017-0024

Axinte, S.D., Petrica, G. & Bacivarov, I. (2018). GDPR impact on company management and processed data. Quality - Access to Success, 19(165): 150-153. Jandaly, A. & Khojah, M. (2024). Key factors that influence the successful implementation of hr analytics in organizations: A systematic review. Research Journal of Business and Management (RJBM), 11(2): 112-118. http://doi.org/10.17261/Pressacademia.2024.1950 DOI: https://doi.org/10.17261/Pressacademia.2024.1950

Ben-Gal, C. (2019). An ROI-based review of HR analytics: practical implementation tools. Emerald Publishing Limited.

Boatman, A. (2025). 4 types of HR analytics with examples. https://www.aihr.com/blog/types-of-hr-analytics/. Accessed: 29/04/2025.

Buttner, H. & Tullar, W. (2018). A representative organizational diversity metric: a dashboard measure for executive action. Equality, Diversity and Inclusion: An International Journal, 37(3): 219-232. Doi: 10.1108/GM-12-2013-0140 DOI: https://doi.org/10.1108/EDI-04-2017-0076

Cai, L. & Zhu, Y. (2015). The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14 (2): 1-10. DOI: http://dx.doi.org/10.5334/dsj-2015-00 DOI: https://doi.org/10.5334/dsj-2015-002

Calza, F., Pagliuca, M., Risitano, M. & Sorrentino, A. (2020). Testing moderating effects on the relationships among on-board cruise environment, satisfaction, perceived value and behavioral intentions. International Journal of Contemporary Hospitality Management, 32(2): 934-952. DOI: https://doi.org/10.1108/IJCHM-09-2019-0773

Chowdhury, S. Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A. & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1): 1-22. DOI:10.1016/j.hrmr.2022.100899 DOI: https://doi.org/10.1016/j.hrmr.2022.100899

CHRMP. (2025). 4 types of HR analytics: A comprehensive guide. https://www.chrmp.com/types-of-hr-analytics/. Accessed: 30/04/2025.

Diez, A. (2018). The unintended consequences of pay for performance: A review and synthesis of the evidence. Human Resource Management Review, 28(2): 163-177.

Diván, M.J. (2017). Data-driven decision making. International Conference on Infocom Technologies and Unmanned Systems, 1-7. DOI:10.1109/ICTUS.2017.8285973 DOI: https://doi.org/10.1109/ICTUS.2017.8285973

Dubey, N. (2023). A review of literature on use of HR Analytics in decision-making. International Journal for Research Trends and Innovation, 8(10): 362-371.

Eze, E., Gleasure, R. & Heavin, C. (2022). Worlds apart: a socio-material exploration of mHealth in rural areas of developing countries. Information Technology & People, 35(8): 99-141. Lim, C., Kim, M.J., Kim, K.H., Kim, K.J. & Maglio, P.P. (2018). Using data to advance service: managerial issues and theoretical implications from action research. Journal of Service Theory and Practice, 28(1): 99-128. DOI: https://doi.org/10.1108/ITP-04-2020-0228

Fu, Q., Nicholson, G.L. & Easton, J.M. (2024). Understanding data quality in a data-driven industry context: Insights from the fundamentals. Journal of Industrial Information Integration, 42 (2024): 1-20. DOI: https://doi.org/10.1016/j.jii.2024.100729

Garcia-Arroyo, J. & Osca, A. (2019). Big data contributions to human resource management: a systematic review. International Journal of Human Resource Management, 5192. Doi: 10. 1080/09585192.2019.1674357

Heuvel, S. & Bondarouk, T. (2017). The rise (and fall) of HR analytics- A study into the future application, value, structure, and system support. Journal of Organizational Effectiveness: People and Performance, 4(2): 157-178. DOI: https://doi.org/10.1108/JOEPP-03-2017-0022

Hobfeld, S. (2017). Optimization on decision making driven by digitalization. Econ World, 5(2): 120-128. DOI: https://doi.org/10.17265/2328-7144/2017.02.004

Ilieva, M. & Logeais, C.G. (2021). The use of digital technology in decision-making processes. Master Thesis in Business Administration. Lund University.

Jha, S. (2022). Data Privacy and Security Issues in HR Analytics: Challenges and the Road Ahead. Springer, Singapore. https://doi.org/10.1007/978-981-16-2126-0_17 DOI: https://doi.org/10.1007/978-981-16-2126-0_17

Justworks. (2024). Exploring the 4 types of HR analytics. https://www.justworks.com/blog/exploring-the-4-types-of-hr-analytics#the-four-types-of-hr-analytics. Accessed: 30/04/2025.

Kane, G. (2015). People analytics through super-charged ID. MIT Sloan Management Review, 56(4): 1-9.

Katfi, H., Mrhari, A., Katfi, A. & El Mnouer, O. (2023). Human resources analytics: Challenges and Opportunities for Businesses. African Scientific Journal, 3(20): 976 – 987. DOI : 10.5281/zenodo.10149854

Kaur, R. & Dhawan, P. (2021). HR analytics in revamping human resource management in 21st century. Amity Journal of Management, 9(2): 26-36. DOI:10.1108/BIJ-04-2022-027

Kavanagh, M.J. & Thite, M. (2018). Human resource information systems: Basics, applications, and future directions. 3rd ed. Thousand Oaks, CA, USA: SAGE Publications.

Khaliq, S. & Saritha, B. (2023). Benefits and challenges of adopting hr analytics: A comprehensive review. Journal of Economics, Management and Trade, 29(11): 24-33. DOI:10.9734/jemt/2023/v29i111159 DOI: https://doi.org/10.9734/jemt/2023/v29i111159

Khan, N.A., Malik, A. & Khan, A.A. (2024). Human resource analytics: A novel approach to bridge the gap between human resource functions and organizational performance. International Journal of Human Capital in Urban Management, 9(2): 267-278. DOI:10.22034/IJHCUM.2024.02.06

Kim, S., Wang, Y. & Boon, C. (2021). Sixty years of research on technology and human resource management: looking back and looking forward. Human Resource Management, 60(1): 229-247. Doi: 10.1002/hrm.22049 DOI: https://doi.org/10.1002/hrm.22049

Krishna, S.H., Sharma, S., Jadhav, R. & Manoj, P. (2022). Human resource analytics for decision making. Manager - The British Journal of Administrative Management, 58(154): 144-154.

Levenson, A. (2018). Using workforce analytics to improve strategy execution. Human Resource Management, 57(3): 685-700. Doi: 10.1002/hrm.21850 DOI: https://doi.org/10.1002/hrm.21850

Li, W., Guo, X. & Cao, D. (2021). The complexity of technological innovation decision-making in emerging industries. Hindawi Complexity, 1-14. https://doi.org/10.1155/2021/3611921 DOI: https://doi.org/10.1155/2021/3611921

Lodha, S.R., Deshpande, P.A., Kakade, S., Sundaram, S.K. & Deshmukh, P. (2024). Data privacy and security in HR systems. The Empirical Economics Letters, 23(2): 1-7. https://doi.org/10.5281/zenodo.12740943

Marler, J.H., & Boudreau, J.W. (2017). An evidence-based review of HR Analytics. The International Journal of Human Resource Management, 28(1): 3-26. https://doi.org/10.1080/09585192.2016.1244699 DOI: https://doi.org/10.1080/09585192.2016.1244699

McCartney, S. & Fu, N. (2022). Bridging the gap: why, how and when HR analytics can impact organizational performance. Management Decision, 60(13): 25-47. DOI 10.1108/MD-12-2020-158 DOI: https://doi.org/10.1108/MD-12-2020-1581

McIver, D., Lengnick-Hall, M.L. & Lengnick-Hall, C.A. (2018). A strategic approach to workforce analytics: Integrating science and agility. Business Horizons, 61(3): 397-407. Doi: 10. 1016/j.bushor.2018.01.005 DOI: https://doi.org/10.1016/j.bushor.2018.01.005

Neziraj, E.Q. & Shaqiri, A.B. (2018). The impact of information technology in decision making process of companies in Kosovo. Informatologia, 51(1-2): 13-23. DOI:10.32914/i.51.1-2.2 DOI: https://doi.org/10.32914/i.51.1-2.2

Novogroder, D. (2024). Data integrity vs data quality: What’s the difference? https://lakefs.io/data-quality/data-integrity-vs-data-quality/. Accessed: 05/05/2025.

Okatta, C.G., Ajayi, F.A. & Olawale, O. (2024). Leveraging HR analytics for strategic decision making: Opportunities and challenges. International Journal of Management & Entrepreneurship Research, 6(4): 1304-1325. DOI: 10.51594/ijmer.v6i4.1060 DOI: https://doi.org/10.51594/ijmer.v6i4.1060

Okon, R., Odionu, C.S. & Bristol-Alagbariya, B. (2024). Integrating data-driven analytics into human resource management to improve decision-making and organizational effectiveness. IRE Journals, 8(6): 574-596.

Pandey, S.K. & Pandey, G. (2020). HR analytics: A modern tool for HR decision-making. International Journal of Engineering and Management Research, 10(3): 1–6. DOI: https://doi.org/10.34218/JOM.6.3.2019.007

Rosin, F., Forget, P., Lamouri, S. & Pellerin, R. (2022). Enhancing the decision-making process through industry 4.0 technologies. Sustainability, 14(1): 1-35. https://doi.org/10.3390/su14010461 DOI: https://doi.org/10.3390/su14010461

Sandeep, M.S. & Bhambu, M.K. (2023). Impact of HR analytics in strategic decision making in the info tech sector. IOSR Journal of Business and Management (IOSR-JBM), 25(3): 49-55. DOI: 10.9790/487X-2503044955

Schein, E.H. (2017). Organizational culture and leadership. 5th ed. San Francisco, CA, USA: Jossey-Bass.

Schiemann, W.A., Seibert, J.H. & Blankenship, M.H. (2018). Putting human capital analytics to work: Predicting and driving business success. Human Resource Management, 57(3): 795-807. Doi: 10.1002/hrm.21843 DOI: https://doi.org/10.1002/hrm.21843

Sharma, P., Jha, S. & Dash, S. (2022). HR analytics: A conceptual study on decision making. YMER, 21(7): 636-645. DOI:10.37896/YMER21.07/49 DOI: https://doi.org/10.37896/YMER21.07/49

Simon, C. & Ferreiro, E. (2018). Workforce analytics: a case study of scholar–practitioner collaboration. Human Resource Management, 57(3): 781-793. Doi: 10.1002/hrm.21853 DOI: https://doi.org/10.1002/hrm.21853

Downloads

Published

2025-08-13

How to Cite

Ngo Ndjama, J. D. (2025). Leveraging the power of human resource analytics for enhanced decision making: opportunities and challenges. International Journal of Research in Business and Social Science (2147- 4478), 14(6), 53–69. https://doi.org/10.20525/ijrbs.v14i6.4276

Issue

Section

Strategic Approach to Business Ecosystem and Organizational Development