Improving the prediction of social media engagement in universities by utilizing feature selection in machine learning

Authors

  • Dino Keco Faculty of Engineering, Natural and Medical Sciences, Department of Information Technology, International Burch University, Francuske revolucije bb., 71000 Sarajevo, Bosnia and Herzegovina https://orcid.org/0000-0002-1583-242X
  • Engin Obucic Faculty of Economics and Social Sciences, Department of Management, International Burch University, Francuske revolucije bb., 71000 Sarajevo, Bosnia and Herzegovina https://orcid.org/0009-0001-9574-3418
  • Mersid Poturak Faculty of Economics and Social Sciences, Department of Management, International Burch University, Francuske revolucije bb., 71000 Sarajevo, Bosnia and Herzegovina

DOI:

https://doi.org/10.20525/ijrbs.v13i1.3132

Keywords:

Machine learning, social media, Facebook, feature selection, user engagement

Abstract

This study aims to examine the importance of feature selection in machine learning, specifically in predicting user engagement with social media post photographs on university Facebook pages. The paper uses a thorough analysis to demonstrate the crucial significance of choosing suitable features and their corresponding algorithms. The research intends to demonstrate how this strategic approach affects the accuracy of prediction findings in social media interaction. The research presents a compelling case study involving 24 leading universities from Australia, the United Kingdom, and the United States. The results underscore the efficacy of the method, stressing that the meticulous selection of characteristics and the use of appropriate algorithms are crucial elements for attaining the best results in social media forecasts. Implications: The study's results have important consequences, particularly within the changing environment of machine learning and its use in social media. Feature selection and algorithm choice are vital for optimizing social media initiatives for institutions.

Downloads

Download data is not yet available.

References

Al-Ayash, A., Kane, R. T., Smith, D., & Green-Armytage, P. (2016). The influence of color on student emotion, heart rate, and performance in learning environments. Color Research and Application, 41(2), 196–205. DOI: https://doi.org/10.1002/col.21949

Bardenet, R., Brendel, M., Kégl, B., & Sebag, M. (2013). Collaborative hyperparameter tuning. In S. Dasgupta & D. McAllester (Eds.), Proceedings of the 30th International Conference on Machine Learning (Vol. 28, pp. 199–207). PMLR.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bohn, K. (2006). 50 Principles of Composition in Photography: A Practical Guide to Seeing Photographically Through the Eyes of a Master Photographer. CCB Publishing.

Bramer, M. (2020). Principles of Data Mining. Springer London. DOI: https://doi.org/10.1007/978-1-4471-7493-6

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. Proceedings of the 23rd International Conference on Machine Learning, 161–168. DOI: https://doi.org/10.1145/1143844.1143865

Channabasava, U., & Raghavendra, B. K. (2022). Ensemble assisted multi-feature learnt social media link prediction model using machine learning techniques. Revue D Intelligence Artificielle, 36(3), 439–444. DOI: https://doi.org/10.18280/ria.360311

El Bouchefry, K., & de Souza, R. S. (2020). Chapter 12 - Learning in Big Data: Introduction to Machine Learning. In P. Škoda & F. Adam (Eds.), Knowledge Discovery in Big Data from Astronomy and Earth Observation (pp. 225–249). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-819154-5.00023-0

Felix Biessmann Amazon Research, Berlin, Germany, David Salinas Amazon Research, Berlin, Germany, Sebastian Schelter Amazon Research, Berlin, Germany, & Philipp Schmidt Amazon Research, Berlin, Germany, & Dustin Lange Amazon Research, Berlin, Germany. (2018, October 17). “Deep” Learning for Missing Value Imputationin Tables with Non-Numerical Data. https://doi.org/10.1145/3269206.3272005 DOI: https://doi.org/10.1145/3269206.3272005

Freeman, M. (2014). The Photographer’s Eye: Graphic Guide: Composition and Design for Better Digital Photos. CRC Press. DOI: https://doi.org/10.4324/9780240824604

Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Science & Business Media.

Hunter, F., Biver, S., & Fuqua, P. (2015). Light Science & Magic: An Introduction to Photographic Lighting. CRC Press. DOI: https://doi.org/10.4324/978131586397

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: with Applications in R. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-1-4614-7138-7

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. DOI: https://doi.org/10.1126/science.aaa8415

Karagiannopoulos, M., Anyfantis, D., Kotsiantis, S. B., & Pintelas, P. E. (2004). Feature selection for regression problems. Educational Software Development Laboratory, Department of Mathematics, University of Patras, Greece. Link

Latiffi, M. I. A., Yaakub, M. R., & Ahmad, I. S. (2022). Flower pollination algorithm for feature selection in tweets sentiment analysis. International Journal of Advanced Computer Science and Applications: IJACSA, 13(5). https://doi.org/10.14569/ijacsa.2022.0130551 DOI: https://doi.org/10.14569/IJACSA.2022.0130551

Li, Y., & Xie, Y. (2020). Is a Picture Worth a Thousand Words? An Empirical Study of Image Content and Social Media Engagement. JMR, Journal of Marketing Research, 57(1), 1–19. DOI: https://doi.org/10.1177/0022243719881113

Malamed, C. (2011). Visual Language for Designers: Principles for Creating Graphics that People Understand. Rockport Publishers.

Murphy, K. P. (2018). Machine learning: A probabilistic perspective (adaptive computation and machine learning series). The MIT Press: London, UK. https://www.academia.edu/download/62984186/Machine-Learning-A-Probabilistic-Perspective-Adaptive-Computation-And-Machine-Learning-Series-by20200416-47298-618w08.pdf

Müller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, Inc.

Obucic, E., Poturak, M., & Keco, D. (2023). Predicting User Engagement of Facebook Post Images in Leading Universities: A Machine Learning Approach. Revue d’Intelligence Artificielle, 37(4), 1039–1045. DOI: https://doi.org/10.18280/ria.370426

Poturak, M., Keco, D., & Tutnic, E. (2022). Influence of search engine optimization (SEO) on business performance. International Journal of Research in Business and Social Science (2147-4478), 11(4), 59–68. DOI: https://doi.org/10.20525/ijrbs.v11i4.1865

Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. O’Reilly Media, Inc.

Schutze, H. (2008). IIR 19: Web Search. https://www.cis.uni-muenchen.de/~hs/teach/14s/ir/pdf/19web.pdf

Sheng, K., Dong, W., Huang, H., Ma, C., & Hu, B.-G. (2018). Gourmet photography dataset for aesthetic assessment of food images. SIGGRAPH Asia 2018 Technical Briefs, Article 20. DOI: https://doi.org/10.1145/3283254.3283260

Witten, I. H., & Frank, E. (2002). Data mining: practical machine learning tools and techniques with Java implementations. SIGMOD Rec., 31(1), 76–77. DOI: https://doi.org/10.1145/507338.507355

Zheng, A., & Casari, A. (2018). Feature engineering for machine learning: principles and techniques for data scientists. O’Reilly Media, Inc.

Ziegel, E. R., Neter, J., Kutner, M., Nachtsheim, C., & Wasserman, W. (1997). Applied linear statistical models. Technometrics: A Journal of Statistics for the Physical, Chemical, and Engineering Sciences, 39(3), 342. DOI: https://doi.org/10.2307/1271154

Downloads

Published

2024-02-18

How to Cite

Keco, D., Obucic, E., & Poturak, M. (2024). Improving the prediction of social media engagement in universities by utilizing feature selection in machine learning. International Journal of Research in Business and Social Science (2147- 4478), 13(1), 372–380. https://doi.org/10.20525/ijrbs.v13i1.3132

Issue

Section

Related Topics in Social Science