A scoping review of literature on the application of swarm intelligence in the object classification domain
DOI:
https://doi.org/10.20525/ijrbs.v12i5.2586Keywords:
object classification, swarm intelligence, emergent behaviour, scoping reviewAbstract
This scoping review aims to explore the various swarm technologies and how they have been used in the object classification domain with the desire to motivate the design of a generic swarm intelligence ontology based on the components of various swarm technologies. We used the PRISMA-ScR as a guide to our scoping review protocol. We conducted a search across thirteen databases and a random search as well on the internet for articles. We performed screening of all the articles by title to remove duplicates, we further on did a screening by the year of publication to ensure that all articles to be considered were published between 2012 and 2022 and we then did abstract or text synthesis. Our search query retrieved 3224 potential articles from the thirteen databases and 10 articles from a random search on the internet making a total of 3234 articles identified. Deduplication and screening were done on the identified articles and 287 articles which satisfied our inclusion criteria remained. We grouped the articles into three categories namely year of publication, swarm technology and swarm application. The year of publication showed a linear trend line which is an indication of growth in the swarm intelligence domain. Of the six categories of aims we identified we voluntarily chose to ignore articles where the aim was not specified. We noticed that 64.9% of articles were aimed at either modifying or improving. The swarm technology category indicated that 58.54% of the included articles were based on the Particle Swarm Optimization either independently or as part of a hybrid algorithm. 83.97% of the articles used classification as their swarm application. Interesting to note was the appearance of feature selection and optimization in this category. This scoping review gave an overview of how swarm technologies have been used in the object classification domain. Further research can be done by bringing and using existing algorithms in the development of generic swarm intelligence inspired ontologies.
Downloads
References
Abraham, A., Das, S., & Roy, S. (2008). Swarm Intelligence Algorithms for Data Clustering. Soft Computing for Knowledge Discovery and Data Mining. Springer US, 279–313. https://doi.org/10.1007/978-0-387-69935-6_12 DOI: https://doi.org/10.1007/978-0-387-69935-6_12
Bajec, I. L., Zimic, N., & Mraz, M. (2007). The computational beauty of flocking: Boids revisited The computational beauty of flocking?: boids revisited. Mathematical and Computer Modelling of Dynamical Systems, 13(August), 331–347. https://doi.org/10.1080/13873950600883485 DOI: https://doi.org/10.1080/13873950600883485
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828. https://doi.org/10.1109/TPAMI.2013.50 DOI: https://doi.org/10.1109/TPAMI.2013.50
Bpharm, H. K., Bennett, M., Godfrey, C., Mcinerney, P., Munn, Z., & Peters, M. (2020). Evaluation of the JBI scoping reviews methodology by current users. 95–100. https://doi.org/10.1097/XEB.0000000000000202 DOI: https://doi.org/10.1097/XEB.0000000000000202
Brezo?nik, L., Fister, I., & Podgorelec, V. (2018). Swarm intelligence algorithms for feature selection: A review. In Applied Sciences (Switzerland) (Vol. 8, Issue 9). https://doi.org/10.3390/app8091521 DOI: https://doi.org/10.3390/app8091521
Chakraborty, A., & Kar, A. K. (2017). Swarm intelligence: A review of algorithms. In Modeling and Optimization in Science and Technologies (Vol. 10, pp. 475–494). Springer Verlag. https://doi.org/10.1007/978-3-319-50920-4_19 DOI: https://doi.org/10.1007/978-3-319-50920-4_19
Chandran, T. R., Reddy, A. V., & Janet, B. (2016). A social spider optimization approach for clustering text documents. Proceeding of IEEE - 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, IEEE - AEEICB 2016, 2(1), 22–26. https://doi.org/10.1109/AEEICB.2016.7538275 DOI: https://doi.org/10.1109/AEEICB.2016.7538275
Chang, Y. C., Yang, P. C., & Chiang, J. H. (2009). Ontology-based intelligent web mining agent for Taiwan travel. Proceedings - 2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT Workshops 2009, 3, 421–424. https://doi.org/10.1109/WI-IAT.2009.316 DOI: https://doi.org/10.1109/WI-IAT.2009.316
Chowdhury, Z. I., Imtiaz, M. H., Azam, M. M., Sumi, M. R. A., & Nur, N. S. (2011). Design and implementation of Pyroelectric Infrared sensor based security system using microcontroller. TechSym 2011 - Proceedings of the 2011 IEEE Students’ Technology Symposium, 1–5. https://doi.org/10.1109/TECHSYM.2011.5783853 DOI: https://doi.org/10.1109/TECHSYM.2011.5783853
Chu, S. C., Huang, H. C., Roddick, J. F., & Pan, J. S. (2011). Overview of algorithms for swarm intelligence. In Conference Paper: Vol. 6922 LNAI (Issue PART 1). https://doi.org/10.1007/978-3-642-23935-9_3 DOI: https://doi.org/10.1007/978-3-642-23935-9_3
Cucchiara, R. (2005). Multimedia Surveillance Systems Categories and Subject Descriptors. Proceeding VSSN ’05 Proceedings of the Third ACM International Workshop on Video Surveillance & Sensor Networks, 6, 3–10. https://doi.org/10.1145/1099396.1099399 DOI: https://doi.org/10.1145/1099396.1099399
Du, J., He, J., & Sun, W. (2016). Object Classification Methods. Computer Vision Technology for Food Quality Evaluation, 87–110. https://doi.org/10.1016/B978-0-12-802232-0.00004-9 DOI: https://doi.org/10.1016/B978-0-12-802232-0.00004-9
Evangeline, D., & Abirami, T. (2019). Social Spider Optimization Algorithm: Theory and its Applications. International Journal of Innovative Technology and Exploring Engineering, 8(7C2), 327–331. https://doi.org/10.35940/ijitee.i8261.0881019 DOI: https://doi.org/10.35940/ijitee.I8261.0881019
Evans, H., & Zhang, M. (2008a). Particle swarm optimisation for object classification. 2008 23rd International Conference Image and Vision Computing New Zealand, IVCNZ, 4–9. https://doi.org/10.1109/IVCNZ.2008.4762143
Evans, H., & Zhang, M. (2008b). Particle Swarm Optimisation for Object Classification. 2008 23rd International Conference Image and Vision Computing New Zealand, 26–28. https://doi.org/10.1109/IVCNZ.2008.4762143 DOI: https://doi.org/10.1109/IVCNZ.2008.4762143
González, D., Pérez, J., Milanés, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135–1145. https://doi.org/10.1109/TITS.2015.2498841 DOI: https://doi.org/10.1109/TITS.2015.2498841
Grendait?, D., & Stonevi?ius, E. (2022). Machine Learning Algorithms for Biophysical Classification of Lithuanian Lakes Based on Remote Sensing Data. Water, 14(11), 1732. https://doi.org/10.3390/w14111732 DOI: https://doi.org/10.3390/w14111732
Gupta, A., Anpalagan, A., Guan, L., & Khwaja, A. S. (2021). Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array, 10(February), 100057. https://doi.org/10.1016/j.array.2021.100057 DOI: https://doi.org/10.1016/j.array.2021.100057
Hassoune, K., Dachry, W., Moutaouakkil, F., & Medromi, H. (2016). Smart parking Systems: A Survey. 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA). https://doi.org/10.1109/SITA.2016.7772297 DOI: https://doi.org/10.1109/SITA.2016.7772297
Jeevanantham, D., Dyszuk, E., & Bartlett, D. (2015). The Manual Ability Classification System: A Scoping Review. Pediatric Physical Therapy, 27(3), 236–241. https://doi.org/10.1097/PEP.0000000000000151 DOI: https://doi.org/10.1097/PEP.0000000000000151
Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization?: artificial bee colony ( ABC ) algorithm. Springer Science, 459–471. https://doi.org/10.1007/s10898-007-9149-x DOI: https://doi.org/10.1007/s10898-007-9149-x
Karaboga, D., Gorkemli, B., & Ozturk, C. (2014). A comprehensive survey?: artificial bee colony ( ABC ) algorithm and applications. Springer Singapore, 21–57. https://doi.org/10.1007/s10462-012-9328-0 DOI: https://doi.org/10.1007/s10462-012-9328-0
Kaur, E. N., & Kaur, E. Y. (2014). Object classification Techniques using Machine Learning Model. International Journal of Computer Trends and Technology, 18(4), 170–174. https://doi.org/10.14445/22312803/ijctt-v18p140 DOI: https://doi.org/10.14445/22312803/IJCTT-V18P140
Lámer, J., Cymbalak, D., & Jakab, F. (2013). Computer vision based object recognition principles in education. ICETA 2013 - 11th IEEE International Conference on Emerging ELearning Technologies and Applications, Proceedings, June 2014, 253–257. https://doi.org/10.1109/iceta.2013.6674439 DOI: https://doi.org/10.1109/ICETA.2013.6674439
Lobato, F. S., & Steffen, V. (2014). Fish swarm optimization algorithm applied to engineering system design. Latin American Journal of Solids and Structures, 11(1), 143–156. https://doi.org/10.1590/S1679-78252014000100009 DOI: https://doi.org/10.1590/S1679-78252014000100009
López-Ibáñez, M., Stützle, T., & Dorigo, M. (2018). Ant colony optimization: A component-wise overview. In Handbook of Heuristics (Vols. 1–2, pp. 371–407). Springer International Publishing. https://doi.org/10.1007/978-3-319-07124-4_21 DOI: https://doi.org/10.1007/978-3-319-07124-4_21
Luque-Chang, A., Cuevas, E., Fausto, F., Zaldívar, D., & Pérez, M. (2018). Social Spider Optimization Algorithm: Modifications, Applications, and Perspectives. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/6843923 DOI: https://doi.org/10.1155/2018/6843923
Lv, X., Chen, H., Zhang, Q., Li, X., Huang, H., & Wang, G. (2018). An improved bacterial-foraging optimization-based machine learning framework for predicting the severity of somatization disorder. Algorithms, 11(2). https://doi.org/10.3390/a11020017 DOI: https://doi.org/10.3390/a11020017
Mahalingam, T., & Subramoniam, M. (2020). ACO–MKFCM: An Optimized Object Detection and Tracking Using DNN and Gravitational Search Algorithm. Wireless Personal Communications, 110(3), 1567–1604. https://doi.org/10.1007/s11277-019-06802-3 DOI: https://doi.org/10.1007/s11277-019-06802-3
Mantini, G., Meijer, L. L., Glogovitis, I., In ‘T Veld, S. G. J. G., Paleckyte, R., Capula, M., Le Large, T. Y. S., Morelli, L., Pham, T. V., Piersma, S. R., Frampton, A. E., Jimenez, C. R., Kazemier, G., Koppers-Lalic, D., Wurdinger, T., & Giovannetti, E. (2021). Omics analysis of educated platelets in cancer and benign disease of the pancreas. Cancers, 13(1), 1–20. https://doi.org/10.3390/cancers13010066 DOI: https://doi.org/10.3390/cancers13010066
Micheloni, C., Foresti, G. L., & Snidaro, L. (2014). Intelligent Distributed Surveillance Systems: A network of co-operative cameras for visual surveillance. Image (Rochester, N.Y.), November 1995, 205–212. https://doi.org/10.1049/ip-vis DOI: https://doi.org/10.1049/ip-vis:20041256
Perlin, H. A., Lopes, H. S., & Centeno, T. M. (2008). Particle swarm optimization for object recognition in computer vision. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5027 LNAI, 11–21. https://doi.org/10.1007/978-3-540-69052-8_2 DOI: https://doi.org/10.1007/978-3-540-69052-8_2
Peters, M. D. J., Godfrey, C. M., McInerney, P., Soares, C. B., Khalil, H., & Parker, D. (2015). The Joanna Briggs Institute Reviewers’ Manual 2015: Methodology for JBI scoping reviews. International Journal Of Evidence Based Healthcare, 13, 141–146. https://doi.org/10.1097/XEB.0000000000000050 DOI: https://doi.org/10.1097/XEB.0000000000000050
Rao, K. S., Sammulal, P., Sambasivarao, M., & Sathyamoorthy, V. (2017). Hybrid Image Classification using ACO with Fuzzy Logic for Textured and Non-Textured Images. Indian Journal of Science and Technology, 10(14), 1–5. https://doi.org/10.17485/ijst/2017/v10i14/106380 DOI: https://doi.org/10.17485/ijst/2017/v10i14/106380
Revathi, G., & Dhulipala, V. R. S. (2012). Smart parking systems and sensors: A survey. 2012 International Conference on Computing, Communication and Applications, ICCCA 2012. https://doi.org/10.1109/ICCCA.2012.6179195 DOI: https://doi.org/10.1109/ICCCA.2012.6179195
Sikder, A. K., Petracca, G., Aksu, H., Jaeger, T., & Uluagac, A. S. (2021). A Survey on Sensor-Based Threats and Attacks to Smart Devices and Applications. IEEE Communications Surveys and Tutorials, 23(2), 1125–1159. https://doi.org/10.1109/COMST.2021.3064507 DOI: https://doi.org/10.1109/COMST.2021.3064507
Subba, R. k, Sambasiva Rao (Khammam, T., & Sammulal, S. (2019). Object- based Image Classification using Ant Colony Optimization and Fuzzy Logic. International Journal of Innovative Technology and Exploring Engineering, 9(2), 315–319. https://doi.org/10.35940/ijitee.b6283.129219 DOI: https://doi.org/10.35940/ijitee.B6283.129219
Tricco, A. C., Lillie, E., Zarin, W., Brien, K. K. O., & Colquhoun, H. (2018). Research And Reporting Methods Prisma Extension for Scoping Reviews ( PRISMA-ScR ): Checklist and Explanation. September. https://doi.org/10.7326/M18-0850 DOI: https://doi.org/10.7326/M18-0850
Wagner, M., & Cai, W. (2013). Emergence by Strategy?: Flocking Boids and their Fitness in Relation to Model Complexity. 2013 Winter Simulation Conference, October 2015. https://doi.org/10.1109/WSC.2013.6721532 DOI: https://doi.org/10.1109/WSC.2013.6721532
Yu, D., Chen, C. L. P., & Xu, H. (2021). Intelligent Decision Making and Bionic Movement Control of Self-Organized Swarm. IEEE Transactions on Industrial Electronics, 68(7), 6369–6378. https://doi.org/10.1109/TIE.2020.2998748 DOI: https://doi.org/10.1109/TIE.2020.2998748
Zemmal, N., Azizi, N., Sellami, M., Cheriguene, S., Ziani, A., AlDwairi, M., & Dendani, N. (2020). Particle Swarm Optimization Based Swarm Intelligence for Active Learning Improvement: Application on Medical Data Classification. Cognitive Computation, 12(5), 991–1010. https://doi.org/10.1007/s12559-020-09739-z DOI: https://doi.org/10.1007/s12559-020-09739-z
Zeng, Z., Guan, L., Yi, S., Zhu, Y., Liu, Q., Tong, Q., & Zeng, S. (2017). An object classification method based on the improved bacterial foraging optimisation algorithm. International Journal of Wireless and Mobile Computing, 12(2), 166–173. https://doi.org/10.1504/IJWMC.2017.084175 DOI: https://doi.org/10.1504/IJWMC.2017.084175
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nyaradzo Alice Tsedura, Colin Chibaya, Ernest Bhero

This work is licensed under a Creative Commons Attribution 4.0 International License.
For all articles published in IJRBS, copyright is retained by the authors. Articles are licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. These conditions allow for maximum use and exposure of the work, while ensuring that the authors receive proper credit.