Bridging causal explanation and predictive modeling: the role of PLS-SEM
DOI:
https://doi.org/10.20525/ijrbs.v13i10.3888Keywords:
Causal explanation, predictive power, PLSpredictAbstract
Partial Least Squares Structural Equation Modeling has gained considerable attention across diverse academic fields, including business, social sciences, marketing, and management. A key challenge in utilizing PLS-SEM is balancing explanatory and predictive power when selecting the most suitable model from competing alternatives. This paper explores the effectiveness of various quality criteria for evaluating causal-predictive models, with a focus on resistance to change in Vietnamese SMEs. The study emphasizes the importance of both in-sample and out-of-sample predictions, using metrics such as R², BIC, AIC, Q², RMSE, MAE, and CVPAT. The findings reveal that traditional criteria like R² may not be sufficient for identifying the best model, while PLSpredict, CVPAT, BIC, and AIC offer superior performance in determining the optimal balance between explanatory and predictive capabilities. These insights provide practical implications for researchers and practitioners, highlighting the need to tailor model selection to specific objectives, such as theory development or real-world forecasting. For practitioners, the study underscores the benefits of leveraging simpler, more generalizable models for robust decision-making in dynamic or resource-constrained environments.
Downloads
References
Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255-265. https://doi.org/10.2307/2334537 DOI: https://doi.org/10.1093/biomet/60.2.255
Al-Jaradat, M. K., Khasawneh, S., Abu-Alruz, J., & Bataineh, O. (2020). Authentic leadership practices in the university setting: the theory of tomorrow. International Journal of Management in Education, 14(3), 229-244. https://doi.org/10.1504/IJMIE.2020.107049 DOI: https://doi.org/10.1504/IJMIE.2020.107049
Avey, J. B., Avolio, B. J., Crossley, C. D., & Luthans, F. (2009). Psychological ownership: Theoretical extensions, measurement and relation to work outcomes. Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 30(2), 173-191. https://doi.org/10.1002/job.583 DOI: https://doi.org/10.1002/job.583
Brown, N. C., Crowley, R. M., & Elliott, W. B. (2020). What are you saying? Using topic to detect financial misreporting. Journal of Accounting Research, 58(1), 237-291. https://doi.org/10.1111/1475-679X.12294 DOI: https://doi.org/10.1111/1475-679X.12294
Colquitt, J. A. (2001). On the dimensionality of organizational justice: a construct validation of a measure. Journal of Applied Psychology, 86(3), 386-400. https://doi.org/10.1037//0021-9010.86.3.386 DOI: https://doi.org/10.1037//0021-9010.86.3.386
Cheraghi, R., Ebrahimi, H., Kheibar, N., & Sahebihagh, M. H. (2023). Reasons for resistance to change in nursing: an integrative review. BMC Nursing, 22(1), 310. https://doi.org/10.1186/s12912-023-01460-0 DOI: https://doi.org/10.1186/s12912-023-01460-0
Chin, W., Cheah, J.-H., Liu, Y., Ting, H., Lim, X.-J., & Cham, T. H. (2020). Demystifying the role of causal-predictive modeling using partial least squares structural equation modeling in information systems research. Industrial Management & Data Systems, 120(12), 2161-2209. https://doi.org/10.1108/imds-10-2019-0529 DOI: https://doi.org/10.1108/IMDS-10-2019-0529
Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. In (pp. vii-xvi): JSTOR.
Chu, B., & Qureshi, S. (2023). Comparing out-of-sample performance of machine learning methods to forecast US GDP growth. Computational Economics, 62(4), 1567-1609. https://doi.org/10.1007/s10614-022-10312-z DOI: https://doi.org/10.1007/s10614-022-10312-z
Dârjan, I. (2024). Resistance to Change in the Romanian Educational System: Challenges and Opportunities. Revista de ?tiin?e ale Educa?iei, 49(1), 179-191. https://doi.org/10.35923/jes.2024.1.10 DOI: https://doi.org/10.35923/JES.2024.1.10
Evans, M. I., & Britt, D. W. (2023). Resistance to change. Reproductive Sciences, 30(3), 835-853. https://doi.org/10.1007/s43032-022-01015-9 DOI: https://doi.org/10.1007/s43032-022-01015-9
Goktas, P., & Dirsehan, T. (2024). Using PLS-SEM and XAI for causal-predictive services marketing research. Journal of Services Marketing. https://doi.org/10.1016/j.jbusres.2023.114453 DOI: https://doi.org/10.1108/JSM-10-2023-0377
Gollagari, R., Birega, T., & Mishra, S. S. (2024). Organizational justice, job satisfaction and academic rank: a moderating mediation study on employee commitment in ethiopian public universities. African Journal of Economic and Management Studies. https://doi.org/10.1108/AJEMS-02-2023-0047 DOI: https://doi.org/10.1108/AJEMS-02-2023-0047
Guenther, P., Guenther, M., Ringle, C. M., Zaefarian, G., & Cartwright, S. (2023). Improving PLS-SEM use for business marketing research. Industrial Marketing Management, 111, 127-142. https://doi.org/10.1016/j.indmarman.2023.03.010 DOI: https://doi.org/10.1016/j.indmarman.2023.03.010
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). An Introduction to Structural Equation Modeling. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook (pp. 1-29). Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7_1 DOI: https://doi.org/10.1007/978-3-030-80519-7_1
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203 DOI: https://doi.org/10.1108/EBR-11-2018-0203
Hair, J. F., & Sarstedt, M. (2021). Explanation plus prediction—The logical focus of project management research. Project Management Journal, 52(4), 319-322. https://doi.org/10.1177/8756972821999945 DOI: https://doi.org/10.1177/8756972821999945
Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. Long Range Planning, 45(5-6), 320-340. https://doi.org/10.1016/j.lrp.2012.09.008 DOI: https://doi.org/10.1016/j.lrp.2012.09.008
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8 DOI: https://doi.org/10.1007/s11747-014-0403-8
Hoang, G., Luu, T. T., & Yang, M. (2024). A Systematic Literature Review of Authentic Leadership in Tourism and Hospitality: A Call for Future Research. Cornell Hospitality Quarterly, 19389655241241471. https://doi.org/10.1177/19389655241241471 DOI: https://doi.org/10.1177/19389655241241471
Hoang, T., Suh, J., & Sabharwal, M. (2022). Beyond a numbers game? Impact of diversity and inclusion on the perception of organizational justice. Public Administration Review, 82(3), 537-555. https://doi.org/10.1111/puar.13463 DOI: https://doi.org/10.1111/puar.13463
Hu, X., Chu, L., Pei, J., Liu, W., & Bian, J. (2021). Model complexity of deep learning: A survey. Knowledge and Information Systems, 63, 2585-2619. https://doi.org/10.1007/s10115-021-01605-0 DOI: https://doi.org/10.1007/s10115-021-01605-0
Hwang, H., Sarstedt, M., Cheah, J. H., & Ringle, C. M. (2020). A concept analysis of methodological research on composite-based structural equation modeling: bridging PLSPM and GSCA. Behaviormetrika, 47, 219-241. https://doi.org/10.1007/s41237-019-00085-5 DOI: https://doi.org/10.1007/s41237-019-00085-5
Kebede, S., & Wang, A. (2022). Organizational justice and employee readiness for change: the mediating role of perceived organizational support. Frontiers in Psychology, 13, 806109. https://doi.org/10.3389/fpsyg.2022.806109 DOI: https://doi.org/10.3389/fpsyg.2022.806109
Kim, M., Choi, D., Guay, R. P., & Chen, A. (2024). How does fairness promote innovative behavior in organizational change?: The importance of social context. Applied Psychology, 73(3), 1233-1260. https://doi.org/10.1111/apps.12511 DOI: https://doi.org/10.1111/apps.12511
Kurian, D., & Nafukho, F. M. (2022). Can authentic leadership influence the employees’ organizational justice perceptions?–a study in the hotel context. International Hospitality Review, 36(1), 45-64. https://doi.org/10.1108/IHR-08-2020-0047 DOI: https://doi.org/10.1108/IHR-08-2020-0047
L. Guarana, C., & Avolio, B. J. (2022). Unpacking psychological ownership: How transactional and transformational leaders motivate ownership. Journal of Leadership & Organizational Studies, 29(1), 96-114. https://doi.org/10.1177/15480518211066072 DOI: https://doi.org/10.1177/15480518211066072
Lee, J., & Song, Y. (2023). Validity and reliability of the Korean version of authentic leadership among ICU nurses. Applied Nursing Research, 72, 151696. https://doi.org/10.1016/j.apnr.2023.151696 DOI: https://doi.org/10.1016/j.apnr.2023.151696
Liengaard, B. D., Sharma, P. N., Hult, G. T. M., Jensen, M. B., Sarstedt, M., Hair, J. F., & Ringle, C. M. (2021). Prediction: coveted, yet forsaken? Introducing a cross?validated predictive ability test in partial least squares path modeling. Decision Sciences, 52(2), 362-392. https://doi.org/10.1111/deci.12445 DOI: https://doi.org/10.1111/deci.12445
Olckers, C., Du Plessis, M., & Casaleggio, R. (2020). Authentic leadership, organisational citizenship behaviours, and intention to quit: The indirect effect of psychological ownership. South African Journal of Psychology, 50(3), 371-384. https://doi.org/10.1177/0081246319891658 DOI: https://doi.org/10.1177/0081246319891658
Oreg, S. (2003). Resistance to change: Developing an individual differences measure. Journal of Applied Psychology, 88(4), 680. https://doi.org/10.1037/0021-9010.88.4.680 DOI: https://doi.org/10.1037/0021-9010.88.4.680
Ouenniche, J., Uvalle Perez, O. J., & Ettouhami, A. (2019). A new EDAS-based in-sample-out-of-sample classifier for risk-class prediction. Management Decision, 57(2), 314-323. https://doi.org/10.1108/MD-04-2018-0397 DOI: https://doi.org/10.1108/MD-04-2018-0397
Özkan, A. H. (2023). Organizational justice perceptions and turnover intention: a meta-analytic review. Kybernetes, 52(8), 2886-2899. https://doi.org/10.1108/K-01-2022-0119 DOI: https://doi.org/10.1108/K-01-2022-0119
Peck, J., & Luangrath, A. W. (2023). A review and future avenues for psychological ownership in consumer research. Consumer Psychology Review, 6(1), 52-74. https://doi.org/10.1002/arcp.1084 DOI: https://doi.org/10.1002/arcp.1084
Pierce, J. L., & Peck, J. (2018). The history of psychological ownership and its emergence in consumer psychology. In J. Peck & S. B. Shu (Eds.), Psychological Ownership and Consumer Behavior (pp. 1-18). Springer, Cham. https://doi.org/10.1007/978-3-319-77158-8_1 DOI: https://doi.org/10.1007/978-3-319-77158-8_1
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. 10.1037/0021-9010.88.5.879 DOI: https://doi.org/10.1037/0021-9010.88.5.879
Qi, L., Xu, Y., & Liu, B. (2023). Does justice matter in voice? Inclusive leadership and employee voice: the moderating role of organizational justice perception. Frontiers in Psychology, 14, 1313922. https://doi.org/10.3389/fpsyg.2023.1313922 DOI: https://doi.org/10.3389/fpsyg.2023.1313922
Richter, N. F., & Tudoran, A. A. (2024). Elevating theoretical insight and predictive accuracy in business research: Combining PLS-SEM and selected machine learning algorithms. Journal of Business Research, 173, 114453. https://doi.org/10.1016/j.jbusres.2023.114453 DOI: https://doi.org/10.1016/j.jbusres.2023.114453
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136 DOI: https://doi.org/10.1214/aos/1176344136
Sharma, P. N., Liengaard, B. D., Hair, J. F., Sarstedt, M., & Ringle, C. M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT. European Journal of Marketing, 57(6), 1662-1677. https://doi.org/10.1108/EJM-08-2020-0636 DOI: https://doi.org/10.1108/EJM-08-2020-0636
Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322-2347. https://doi.org/10.1108/ejm-02-2019-0189 DOI: https://doi.org/10.1108/EJM-02-2019-0189
Tate, B. (2008). A longitudinal study of the relationships among self-monitoring, authentic leadership, and perceptions of leadership. Journal of Leadership & Organizational Studies, 15(1), 16-29. https://doi.org/10.1177/1548051808318002 DOI: https://doi.org/10.1177/1548051808318002
Van Hall, M., Baker, T., Nieuwbeerta, P., & Dirkzwager, A. J. (2024). Changes in Probation Officer Procedural Justice and Self-Reported Recidivism. International Journal of Offender Therapy and Comparative Criminology, 0306624X241282112. DOI: https://doi.org/10.1177/0306624X241282112
Van Hall, M., Dirkzwager, A. J., van der Laan, P. H., & Nieuwbeerta, P. (2023). Exploring the linkage between changes in detainees’ perceptions of procedural justice and changes in misconduct. Psychology, Crime & Law, 1-26. https://doi.org/10.1080/1068316X.2023.2207019 DOI: https://doi.org/10.1080/1068316X.2023.2207019
Wang, Q., Sun, N., Hon, A. H., & Zhu, Z. (2024). Linking organizational justice to tourism and hospitality employees’ service orientation: the roles of Confucian values and relationship quality. International Journal of Contemporary Hospitality Management, 36(6), 2107-2124. https://doi.org/10.1108/IJCHM-10-2022-1269 DOI: https://doi.org/10.1108/IJCHM-10-2022-1269
Xu, Z., Yang, F., & Peng, J. (2023). How does authentic leadership influence employee voice? From the perspective of the theory of planned behavior. Current Psychology, 42(3), 1851-1869. https://doi.org/10.1007/s12144-021-01464-6 DOI: https://doi.org/10.1007/s12144-021-01464-6
You, Y., Hu, Z., Li, J., Wang, Y., & Xu, M. (2022). The effect of organizational innovation climate on employee innovative behavior: The role of psychological ownership and task interdependence. Frontiers in Psychology, 13, 856407. https://doi.org/10.3389/fpsyg.2022.856407 DOI: https://doi.org/10.3389/fpsyg.2022.856407
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mei-Lan Lin, Linh Lan Huynh

This work is licensed under a Creative Commons Attribution 4.0 International License.
For all articles published in IJRBS, copyright is retained by the authors. Articles are licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. These conditions allow for maximum use and exposure of the work, while ensuring that the authors receive proper credit.