Online shopping behaviour on social media platforms from the perspective of trust and flow experience: a SEM-Neural Network Modeling
DOI:
https://doi.org/10.20525/ijrbs.v13i5.3414Keywords:
Online shopping behaviour, Social media platforms, SEM-ANN model, UTAUT, Flow, TrustAbstract
This study aims to examine online shopping behaviour on social media platforms. This study formulates a research model integrating trust with the flow theory and some basic constructs of the UTAUT. To analyze the data from an online survey involving 305 participants actively making online purchases through social media platforms. This study applied the Structural Equation Modeling-Artificial Neural Networks (SEM-ANN) technique. Incorporating statistically significant SEM findings, the ANN model was used to analyze linear and nonlinear interactions among proposed variables. The research findings demonstrate that flow emerges as the most significant determinant, succeeded by effort expectancy, social influence, and performance expectancy, in defining the concept of trust. However, the sensitivity analysis using ANN indicates that effort expectancy is the most important factor in establishing trust, followed by flow, social influence, and performance expectancy. The predictive power of intention to use is noteworthy in determining actual use behaviour, with trust and flow emerging as influential factors favourably impacting this intention.
Downloads
References
Ajzen, I. (1991). The theory of planned behaviour. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T DOI: https://doi.org/10.1016/0749-5978(91)90020-T
Al-Saedi, K., Al-Emran, M., Ramayah, T., & Abusham, E. (2020). Developing a general extended UTAUT model for M-payment adoption. Technology in Society, 62, 101293. https://doi.org/ 10.1016/j.techsoc.2020.101293 DOI: https://doi.org/10.1016/j.techsoc.2020.101293
Arceo, P. B. M., Cumahig, I. R. C., Michael, B., & Buenaventura, M. J. V. (2018). The impact of social media platforms on online consumers' intention to purchase in the restaurant industry. Global Journal of Emerging Trends in E-Business, Marketing and Consumer Psychology, 4(1), 2311–3170.
Asiedu, R., & Dube, F. N. M. (2020). Antecedents of Chinese consumer online shopping behaviour. Asian Journal of Business Research, 10(2), 91–110. DOI: https://doi.org/10.14707/ajbr.200085
Auger, P., & Devinney, T. M. (2007). Do What Consumers Say Matter? The Misalignment of Preferences with Unconstrained Ethical Intentions. Journal of Business Ethics, 76(4), 361–383. https://doi.org/10.1007/s10551-006-9287-y DOI: https://doi.org/10.1007/s10551-006-9287-y
Belanche, D., Casaló, L. V., & Flavián, C. (2012). Integrating trust and personal values into the Technology Acceptance Model: The case of e-government services adoption. Cuadernos de Economía y Dirección de La Empresa, 15(4), 192–204. https://doi.org/10.1016/j.cede.2012.04.004 DOI: https://doi.org/10.1016/j.cede.2012.04.004
Bernoff, J., & Li, C. (n.d.). Effects of Brand Attitude and Familiarity. The Journal of Marketing, 59(1), 63–77.
Beyari, H., & Guth, A. (2018). Customer Experience in Social Commerce Websites: Toward an Integrated Conceptual Framework. Journal of Management Research, 10(3), 52. https://doi.org/10.5296/jmr.v10i3.13185 DOI: https://doi.org/10.5296/jmr.v10i3.13185
Beyari, H., & Abareshi, A. (2019). The interaction of trust and social influence factors in the social commerce environment. 931–944. DOI: https://doi.org/10.1007/978-3-319-99007-1_86
Bilgihan, A. (2016). Gen Y customer loyalty in online shopping: An integrated model of trust, user experience and branding. Computers in Human Behavior, pp. 61, 103–113. https://doi.org/10.1016/j.chb.2016.03.014 DOI: https://doi.org/10.1016/j.chb.2016.03.014
Bligh, M. C. (2017). Leadership and Trust. In J. Marques & S. Dhiman (Eds.), Leadership Today (pp. 21–42). Springer International Publishing. https://doi.org/10.1007/978-3-319-31036-7_2 DOI: https://doi.org/10.1007/978-3-319-31036-7_2
Carlson, J., Rahman, M., Voola, R., & De Vries, N. (2018). Customer engagement behaviours in social media: Capturing innovation opportunities. Journal of Services Marketing, 32(1), 83–94. DOI: https://doi.org/10.1108/JSM-02-2017-0059
Carrington, M. J., Neville, B. A., & Whitwell, G. J. (2010). Why ethical consumers don’t walk their talk: Towards a framework for understanding the gap between the ethical purchase intentions and actual buying behaviour of ethically minded consumers. Journal of Business Ethics, pp. 97, 139–158. DOI: https://doi.org/10.1007/s10551-010-0501-6
Celik, H. (2016). Customer online shopping anxiety within the Unified Theory of Acceptance and Use Technology (UTAUT) framework. Asia Pacific Journal of Marketing and Logistics, 28(2). https://doi.org/10.1108/APJML-05-2015-0077 DOI: https://doi.org/10.1108/APJML-05-2015-0077
Chan, F. T. S., & Chong, A. Y. L. (2012). An SEM–neural network approach for understanding determinants of inter-organizational system standard adoption and performances. Decision Support Systems, 54(1), 621–630. https://doi.org /10.1016/ j. dss.2012.08.009 DOI: https://doi.org/10.1016/j.dss.2012.08.009
Chandra, E., Liu, S., Sfenrianto, S., & Wang, G. (2019). Analysis of the Effect of Security and Trust on Buying Decisions on the Tokopedia Mobile Apps. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 452–456. https://doi.org/10.1109/I CIT ISEE 484 80. 201 9.9003846 DOI: https://doi.org/10.1109/ICITISEE48480.2019.9003846
Chandra, S., Srivastava, S. C., & Theng, Y.-L. (2010). Evaluating the Role of Trust in Consumer Adoption of Mobile Payment Systems: An Empirical Analysis. Communications of the Association for Information Systems, 27. https://doi.org/1 0.17 705/1CAIS.02729 DOI: https://doi.org/10.17705/1CAIS.02729
Chang, H. H., & Wang, I. C. (2008). An investigation of user communication behaviour in computer-mediated environments. Computers in Human Behavior, 24(5), 2336–2356. DOI: https://doi.org/10.1016/j.chb.2008.01.001
Chang, K.-C. (2014). Examining the Effect of Tour Guide Performance, Tourist Trust, Tourist Satisfaction, and Flow Experience on Tourists’ Shopping Behavior. Asia Pacific Journal of Tourism Research, 19(2), 219–247. https://doi.org /10.108 0/1094 1665.2012.739189 DOI: https://doi.org/10.1080/10941665.2012.739189
Chang, S. E., Liu, A. Y., & Shen, W. C. (2017). User trust in social networking services: A comparison of Facebook and LinkedIn. Computers in Human Behavior, pp. 69, 207–217. https://doi.org/10.1016/j.chb.2016.12.013 DOI: https://doi.org/10.1016/j.chb.2016.12.013
Chang, Y. P., & Zhu, D. H. (2012). The role of perceived social capital and flow experience in building users’ continuance intention to social networking sites in China. Computers in Human Behavior, 28(3), 995–1001.https://doi.org/10.1016/j.chb.201 2.01.001 DOI: https://doi.org/10.1016/j.chb.2012.01.001
Chen, L. (2014). The influence of social media on consumer behaviour: An empirical study on factors influencing consumer purchase intention in China under the social media context. Denmark: Aarhus University.
Chen, Y., & Barnes, S. (2007). Initial trust and online buyer behaviour. Industrial Management & Data Systems, 107(1), 21–36. DOI: https://doi.org/10.1108/02635570710719034
Chong, A. Y.-L. (2013). A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption. Expert Systems with Applications, 40(4), 1240–1247. https://doi.org/10.1016/j.eswa.2012.08.067 DOI: https://doi.org/10.1016/j.eswa.2012.08.067
Chung, C., & Austria, K. P. (2012). Attitudes toward product messages on social media: Examining online shopping perspectives among young consumers. International Journal of E-Services and Mobile Applications (IJESMA), 4(4), 1–14. DOI: https://doi.org/10.4018/jesma.2012100101
Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences (0 ed.). Routledge. https://doi.org/10.4324/9780203771587 DOI: https://doi.org/10.4324/9780203771587
Compeau, D. R., & Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19(2), 189. https://doi.org/10.2307/249688 DOI: https://doi.org/10.2307/249688
Csikszentmihalyi, M. (1990). Flow. The Psychology of Optimal Experience. New York (HarperPerennial) 1990.
Csíkszentmihályi, M., & Csikszentmihalyi, I. S. (1992). Optimal experience: Psychological studies of flow in consciousness. Cambridge University Press.
Dash, S., & Saji, K. (2008). The role of consumer self-efficacy and website social-presence in customers’ adoption of B2C online shopping: An empirical study in the Indian context. Journal of International Consumer Marketing, 20(2), 33–48. DOI: https://doi.org/10.1300/J046v20n02_04
Davis, F. D. (1989). Perceived Usefulness, Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008 DOI: https://doi.org/10.2307/249008
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. DOI: https://doi.org/10.1080/07421222.2003.11045748
Edwards, S. M. (2011). A Social Media Mindset. Journal of Interactive Advertising, 12(1), 1–3. https://doi.org/10.1080/15252019.2011.10722186 DOI: https://doi.org/10.1080/15252019.2011.10722186
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behaviour: An introduction to theory and research. Addison-Wesley Pub. Co.
Fogel, J., & Zachariah, S. (2017). Intentions to use the Yelp review website and purchase behaviour after reading reviews. Journal of Theoretical and Applied Electronic Commerce Research, 12(1), 53–67. DOI: https://doi.org/10.4067/S0718-18762017000100005
Foxall, G. R. (2015). The Routledge companion to consumer behaviour analysis. Routledge. DOI: https://doi.org/10.4324/9781315850696
Fuller, M. A., Serva, M. A., & Baroudi, J. (2009). Clarifying the integration of trust and TAM in e-commerce environments: Implications for systems design and management. IEEE Transactions on Engineering Management, 57(3), 380–393. DOI: https://doi.org/10.1109/TEM.2009.2023111
Gao, L., & Bai, X. (2014). Online consumer behaviour and its relationship to website atmospheric induced flow: Insights into online travel agencies in China. Journal of Retailing and Consumer Services, 21(4), 653–665. DOI: https://doi.org/10.1016/j.jretconser.2014.01.001
Gefen & Straub. (2003). Managing User Trust in B2C e-Services. E-Service Journal, 2(2), 7. https://doi.org/10.2979/esj.2003.2.2.7 DOI: https://doi.org/10.2979/esj.2003.2.2.7
Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101–107. https://doi.org/10.1093/biomet/61.1.101 DOI: https://doi.org/10.1093/biomet/61.1.101
Gibreel, O., AlOtaibi, D. A., & Altmann, J. (2018). Social commerce development in emerging markets. Electronic Commerce Research and Applications, 27, 152–162. DOI: https://doi.org/10.1016/j.elerap.2017.12.008
Goodhue, D. L., & Thompson, R. L. (1995). Task-Technology Fit and Individual Performance. MIS Quarterly, 19(2), 213. https://doi.org/10.2307/249689 DOI: https://doi.org/10.2307/249689
Guo, Y. M., & Poole, M. S. (2009). Antecedents of flow in online shopping: A test of alternative models. Information Systems Journal, 19(4), 369–390. DOI: https://doi.org/10.1111/j.1365-2575.2007.00292.x
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203 DOI: https://doi.org/10.1108/EBR-11-2018-0203
Hajli, N. (2015). Social commerce constructs and consumer’s intention to buy. International Journal of Information Management, 35(2), 183–191. DOI: https://doi.org/10.1016/j.ijinfomgt.2014.12.005
Heinrichs, J. H., Lim, J., & Lim, K. (2011). Influence of social networking site and user access method on social media evaluation. Journal of Consumer Behaviour, 10(6), 347–355. DOI: https://doi.org/10.1002/cb.377
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management and Data Systems, 116(1), 2-20. DOI: https://doi.org/10.1108/IMDS-09-2015-0382
Hew, T.-S., Leong, L.-Y., Ooi, K.-B., & Chong, A. Y.-L. (2016). Predicting Drivers of Mobile Entertainment Adoption: A Two-Stage SEM-Artificial-Neural-Network Analysis. Journal of Computer Information Systems, 56(4), 352–370. https://doi.org/10.1080/08874417.2016.1164497 DOI: https://doi.org/10.1080/08874417.2016.1164497
Hoffman, D. L., & Novak, T. P. (1996). Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations. Journal of Marketing, 60(3), 50–68. https://doi.org/10.1177/002224299606000304 DOI: https://doi.org/10.1177/002224299606000304
Hoque, R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. International Journal of Medical Informatics, 101, 75–84. https://doi.org/10.1016/j.i jmedinf.2017.02.002 DOI: https://doi.org/10.1016/j.ijmedinf.2017.02.002
Hsu, C.-L., Chang, K.-C., Kuo, N.-T., & Cheng, Y.-S. (2017). The mediating effect of flow experience on social shopping behaviour. Information Development, 33(3), 243–256. https://doi.org/10.1177/0266666916651918 DOI: https://doi.org/10.1177/0266666916651918
Hu, X., Chen, X., & Davison, R. M. (2019). Social support, source credibility, social influence, and impulsive purchase behaviour in social commerce. International Journal of Electronic Commerce, 23(3), 297–327. DOI: https://doi.org/10.1080/10864415.2019.1619905
Hu, X., Huang, Q., Zhong, X., Davison, R. M., & Zhao, D. (2016). The influence of a social shopping website's peer characteristics and technical features on a consumer's purchase intention. International Journal of Information Management, 36(6), 1218–1230. DOI: https://doi.org/10.1016/j.ijinfomgt.2016.08.005
Huang, Z., & Benyoucef, M. (2013). From e-commerce to social commerce: A close look at design features. Electronic Commerce Research and Applications, 12(4), 246–259. DOI: https://doi.org/10.1016/j.elerap.2012.12.003
Huang, Z., & Benyoucef, M. (2017). The effects of social commerce design on consumer purchase decision-making: An empirical study. Electronic Commerce Research and Applications, pp. 25, 40–58. DOI: https://doi.org/10.1016/j.elerap.2017.08.003
Hussain, S., Li, Y., & Li, W. (2021). Influence of platform characteristics on purchase intention in social commerce: Mechanism of psychological contracts. Journal of Theoretical and Applied Electronic Commerce Research, 16(1), 1–17. DOI: https://doi.org/10.4067/S0718-18762021000100102
International Burch University, Poturak, M., Softi?, S., & International Burch University. (2019). Influence of Social Media Content on Consumer Purchase Intention: Mediation Effect of Brand Equity. Eurasian Journal of Business and Economics, 12(23), 17–43. https://doi.org/10.17015/ejbe.2019.023.02 DOI: https://doi.org/10.17015/ejbe.2019.023.02
Jarvenpaa, S. L., Tractinsky, N., & Saarinen, L. (2006). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2), 0–0. https://doi.org/10.1111/j.1083-6101.1999.tb00337.x DOI: https://doi.org/10.1111/j.1083-6101.1999.tb00337.x
Kamboj, S., Sarmah, B., Gupta, S., & Dwivedi, Y. (2018). Examining branding co-creation in brand communities on social media: Applying the paradigm of Stimulus-Organism-Response. International Journal of Information Management, pp. 39, 169–185. DOI: https://doi.org/10.1016/j.ijinfomgt.2017.12.001
Kao, T.-Y., Yang, M.-H., Wu, J.-T. B., & Cheng, Y.-Y. (2016). Co-creating value with consumers through social media. Journal of Services Marketing, 30(2), 141–151. DOI: https://doi.org/10.1108/JSM-03-2014-0112
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68. DOI: https://doi.org/10.1016/j.bushor.2009.09.003
Khasawneh, M. H. A., Hujran, O., & Abdrabbo, T. (2018). A quantitative examination of the factors influencing users' perceptions of trust towards mobile banking services. International Journal of Internet Marketing and Advertising, 12(2), 181. https://doi.org/10.1504/IJIMA.2018.090957 DOI: https://doi.org/10.1504/IJIMA.2018.090957
Kim, N., & Kim, W. (2018). Do your social media lead you to make social deal purchases? Consumer-generated social referrals for sales via social commerce. International Journal of Information Management, 39, 38–48. DOI: https://doi.org/10.1016/j.ijinfomgt.2017.10.006
Kline RB (2015). Principles and practice of structural equation modeling. New York: Guilford publications.
Kline, R. B. (2023). Principles and practice of structural equation modeling (Fifth edition). The Guilford Press.
Korzaan, M. L. (2003). Going with the flow: Predicting online purchase intentions. Journal of Computer Information Systems, 43(4), 25–31. DOI: https://doi.org/10.1080/08874417.2003.11647530
Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behaviour. Information Systems Research, 13(2), 205–223. DOI: https://doi.org/10.1287/isre.13.2.205.83
Lankton, N. K., & McKnight, D. H. (2011). What does it mean to trust Facebook?: Examining technology and interpersonal trust beliefs. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 42(2), 32–54. https://doi.org/10.1145/1989098.1989101 DOI: https://doi.org/10.1145/1989098.1989101
Lee, M. K., & Turban, E. (2001). A trust model for consumer Internet shopping. International Journal of Electronic Commerce, 6(1), 75–91. DOI: https://doi.org/10.1080/10864415.2001.11044227
Lee, M.-C., & Tsai, T.-R. (2010). What Drives People to Continue to Play Online Games? An Extension of Technology Model and Theory of Planned Behavior. International Journal of Human-Computer Interaction, 26(6), 601–620. https://doi.org/ 10.108 0/1 0447311003781318 DOI: https://doi.org/10.1080/10447311003781318
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., Lee, V.-H., & Hew, J.-J. (2019). A hybrid SEM-neural network analysis of social media addiction. Expert Systems with Applications, 133, 296–316. https://doi.org/10.1016/j.eswa.2019.05.024 DOI: https://doi.org/10.1016/j.eswa.2019.05.024
Li, X., Hess, T. J., & Valacich, J. S. (2008). Why do we trust new technology? A study of initial trust formation with organizational information systems. The Journal of Strategic Information Systems, 17(1), 39–71. https://doi.org/10.1016/j.jsis.2008.01.0 01 DOI: https://doi.org/10.1016/j.jsis.2008.01.001
Liebana-Cabanillas, F., & Alonso-Dos-Santos, M. (2017). Factors determining the adoption of Facebook commerce: The moderating effect of age. Journal of Engineering and Technology Management, 44, 1–18. DOI: https://doi.org/10.1016/j.jengtecman.2017.03.001
Limayem, M., Khalifa, M., & Frini, A. (2000). What makes consumers buy from the Internet? A longitudinal study of online shopping. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 30(4), 421–432. DOI: https://doi.org/10.1109/3468.852436
Liu, H., Chu, H., Huang, Q., & Chen, X. (2016). Enhancing the flow experience of consumers in China through interpersonal interaction in social commerce. Computers in Human Behavior, 58, 306–314. DOI: https://doi.org/10.1016/j.chb.2016.01.012
Logan, K., Bright, L. F., & Gangadharbatla, H. (2012). Facebook versus television: Advertising value perceptions among females. Journal of Research in Interactive Marketing, 6(3), 164–179. DOI: https://doi.org/10.1108/17505931211274651
Loureiro, S. M. C., Cavallero, L., & Miranda, F. J. (2018). Fashion brands on retail websites: Customer performance expectancy and e-word-of-mouth. Journal of Retailing and Consumer Services, 41, 131–141. https://doi.org/10.1016/j.jretconser.2017.12.005 DOI: https://doi.org/10.1016/j.jretconser.2017.12.005
Lu, Y., Yang, S., Chau, P. Y. K., & Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & Management, 48(8), 393–403. https://doi.org/10.1016/ j.im.2011.09.006 DOI: https://doi.org/10.1016/j.im.2011.09.006
Mahnke, R., Benlian, A., & Hess, T. (2015). A grounded theory of online shopping flow. International Journal of Electronic Commerce, 19(3), 54–89. DOI: https://doi.org/10.1080/10864415.2015.1000222
Mangold, W. G., & Faulds, D. J. (2009). Social media: The new hybrid element of the promotion mix. Business Horizons, 52(4), 357–365. DOI: https://doi.org/10.1016/j.bushor.2009.03.002
Martilla, J. A., & James, J. C. (1977). Importance-Performance Analysis. Journal of Marketing, 41(1), 77–79. https://doi.org/10.1177/002224297704100112 DOI: https://doi.org/10.1177/002224297704100112
Mensah, I. K. (2019). Predictors of Electronic Government Services Adoption: The African Students’ Perspective in China. International Journal of Public Administration, 42(12), 997–1009. https://doi.org/10.1080/01900692.2019.1572621 DOI: https://doi.org/10.1080/01900692.2019.1572621
Mir, I., & Zaheer, A. (2012). Verification of social impact theory claims in a social media context. Journal of Internet Banking and Commerce, 17(1), 1.
Moon, J.-W., & Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217–230. https://doi.org/10.1016/S0378-7206(00)00061-6 DOI: https://doi.org/10.1016/S0378-7206(00)00061-6
Nadeem, W., Andreini, D., Salo, J., & Laukkanen, T. (2015). Engaging consumers online through websites and social media: A gender study of Italian Generation Y clothing consumers. International Journal of Information Management, 35(4), 432–442. DOI: https://doi.org/10.1016/j.ijinfomgt.2015.04.008
Nel, J., & Boshoff, C. (2017). Development of application-based mobile-service trust and online trust transfer: an elaboration likelihood model perspective. Behaviour & Information Technology, 36(8), 809–826.https://doi.org /1 0.1080/0 144 929 x.2017. 1296493 DOI: https://doi.org/10.1080/0144929X.2017.1296493
O'Brien, R. M. (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity, 41(5), 673–690. https://doi.org/10.1007/s11135-006-9018-6 DOI: https://doi.org/10.1007/s11135-006-9018-6
Pelet, J.-É., Ettis, S., & Cowart, K. (2017a). Optimal experience of flow enhanced by telepresence: Evidence from social media use. Information & Management, 54(1), 115–128.
Pelet, J.-É., Ettis, S., & Cowart, K. (2017b). Optimal experience of flow enhanced by telepresence: Evidence from social media use. Information & Management, 54(1), 115–128. DOI: https://doi.org/10.1016/j.im.2016.05.001
Permatasari, A., & Kartikowati, M. (2018). The influence of website design on customer online trust and perceived risk towards purchase intention: A case of O2O commerce in Indonesia. International Journal of Business and Globalisation, 21(1), 74–86. DOI: https://doi.org/10.1504/IJBG.2018.094097
Permatasari, A., & Kuswadi, E. (2017). The impact of social media on consumers' purchase intention: A study of e-commerce sites in Jakarta, Indonesia. Review of Integrative Business and Economics Research, 6, 321.
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioural research: A critical literature review and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879 DOI: https://doi.org/10.1037/0021-9010.88.5.879
Ramlugun, V. G., & Jugurnauth, L. (2014). The scope of social media browsing and online shopping for Mauritian e-retailers: A study based on utilitarian and hedonic values. Review of Integrative Business and Economics Research, 3(2), 219–241.
Rahi, S., Othman Mansour, M. M., Alghizzawi, M., & Alnaser, F. M. (2019). Integration of UTAUT model in Internet banking adoption context. Journal of Research in Interactive Marketing, 13(3), 411–435. https://doi.org/ 10.11 08/ jrim-02-2018-0032 DOI: https://doi.org/10.1108/JRIM-02-2018-0032
Rathore, A. K., Ilavarasan, P. V., & Dwivedi, Y. K. (2016). Social media content and product co-creation: An emerging paradigm. Journal of Enterprise Information Management, 29(1), 7–18. DOI: https://doi.org/10.1108/JEIM-06-2015-0047
Reza Jalilvand, M., & Samiei, N. (2012). The effect of electronic word of mouth on brand image and purchase intention: An empirical study in the automobile industry in Iran. Marketing Intelligence & Planning, 30(4), 460–476. DOI: https://doi.org/10.1108/02634501211231946
Scott, J. E., & Walczak, S. (2009). Cognitive engagement with a multimedia ERP training tool: Assessing computer self-efficacy and technology acceptance. Information & Management, 46(4), 221–232. DOI: https://doi.org/10.1016/j.im.2008.10.003
Sharifi fard, S., Tamam, E., Hj Hassan, M. S., Waheed, M., & Zaremohzzabieh, Z. (2016). Factors affecting Malaysian university students’ purchase intention in social networking sites. Cogent Business & Management, 3(1), 1182612. DOI: https://doi.org/10.1080/23311975.2016.1182612
Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The Theory of Reasoned Action: A Meta-analysis of Past Research with Recommendations for Modifications and Future Research. Journal of Consumer Research, 15(3), 325. https://doi.org/10.1086/209170 DOI: https://doi.org/10.1086/209170
Shin, D.-H. (2010). Modeling the Interaction of Users and Mobile Payment System: Conceptual Framework. International Journal of Human-Computer Interaction, 26(10), 917–940. https://doi.org/10.1080/10447318.2010.502098 DOI: https://doi.org/10.1080/10447318.2010.502098
Sim, J.-J., Tan, G. W.-H., Wong, J. C. J., Ooi, K.-B., & Hew, T.-S. (2014). Understanding and predicting the motivators of mobile music acceptance – A multi-stage MRA-artificial neural network approach. Telematics and Informatics, 31(4), 569–584. https://doi.org/10.1016/j.tele.2013.11.005 DOI: https://doi.org/10.1016/j.tele.2013.11.005
Singh, S., & Srivastava, S. (2018). The moderating effect of product type on online shopping behaviour and purchase intention: An Indian perspective. Cogent Arts & Humanities, 5(1), 1495043. DOI: https://doi.org/10.1080/23311983.2018.1495043
Streukens, S., Leroi-Werelds, S., & Willems, K. (2017). Dealing with Nonlinearity in Importance-Performance Map Analysis (IPMA): An Integrative Framework in a PLS-SEM Context. In H. Latan & R. Noonan (Eds.), Partial Least Squares Path Modeling (pp. 367–403). Springer International Publishing. https://doi.org/10.1007/978-3-319-64069-3_17 DOI: https://doi.org/10.1007/978-3-319-64069-3_17
Swani, K., Milne, G. R., Brown, B. P., Assaf, A. G., & Donthu, N. (2017). What messages to post? Evaluating the popularity of social media communications in business versus consumer markets. Industrial Marketing Management, pp. 62, 77–87. DOI: https://doi.org/10.1016/j.indmarman.2016.07.006
Tan, G. W.-H., Ooi, K.-B., Leong, L.-Y., & Lin, B. (2014). Predicting the drivers of behavioural intention to use mobile learning: A hybrid SEM-Neural Networks approach. Computers in Human Behavior, pp. 36, 198–213. https://doi.org/10.1016/j.chb.2014.03.052 DOI: https://doi.org/10.1016/j.chb.2014.03.052
Taylor, D. G., Lewin, J. E., & Strutton, D. (2011). Friends, fans, and followers: Do ads work on social networks?: How gender and age shape receptivity. Journal of Advertising Research, 51(1), 258–275. DOI: https://doi.org/10.2501/JAR-51-1-258-275
Tsoukalas, L. H., & Uhrig, R. E. (1997). Fuzzy and neural approaches in engineering. Wiley.
Vance, A., Elie-Dit-Cosaque, C., & Straub, D. W. (2008). Examining trust in information technology artefacts: The effects of system quality and culture. Journal of Management Information Systems, 24(4), 73–100. DOI: https://doi.org/10.2753/MIS0742-1222240403
Veeramootoo, N., Nunkoo, R., & Dwivedi, Y. K. (2018). What determines the success of an e-government service? Validation of an integrative model of e-filing continuance usage. Government Information Quarterly, 35(2), 161–174. DOI: https://doi.org/10.1016/j.giq.2018.03.004
Venkatesh, M., Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540 DOI: https://doi.org/10.2307/30036540
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926 DOI: https://doi.org/10.1287/mnsc.46.2.186.11926
Wang, H., & Hu, Z. (2009). Research on online consumer behaviour based on experience. 2009 16th International Conference on Industrial Engineering and Engineering Management, 364–368. https://doi.org/10.1109/ICIEEM.2009.5344572 DOI: https://doi.org/10.1109/ICIEEM.2009.5344572
Wei, Y., Wang, C., Zhu, S., Xue, H., & Chen, F. (2018). Online purchase intention of fruits: Antecedents in an integrated model based on technology acceptance model and perceived risk theory. Frontiers in Psychology, 9, 1521. DOI: https://doi.org/10.3389/fpsyg.2018.01521
Wu, L., Chiu, M.-L., & Chen, K.-W. (2020). Defining the determinants of online impulse buying through a shopping process of integrating perceived risk, expectation-confirmation model, and flow theory issues. International Journal of Information Management, 52, 102099. DOI: https://doi.org/10.1016/j.ijinfomgt.2020.102099
Yahia, I. B., Al-Neama, N., & Kerbache, L. (2018). Investigating the drivers for social commerce in social media platforms: Importance of trust, social support and the platform perceived usage. Journal of Retailing and Consumer Services, 41, 11–19. DOI: https://doi.org/10.1016/j.jretconser.2017.10.021
Zhang, H., Lu, Y., Gupta, S., & Zhao, L. (2014). What motivates customers to participate in social commerce? The impact of technological environments and virtual customer experiences. Information & Management, 51(8), 1017–1030. DOI: https://doi.org/10.1016/j.im.2014.07.005
Zhang, T., Tao, D., Qu, X., Zhang, X., Zeng, J., Zhu, H., & Zhu, H. (2020). Automated vehicle acceptance in China: Social influence and initial trust are key determinants. Transportation Research Part C: Emerging Technologies, 112, 220–233. https://doi.org/10.1016/j.trc.2020.01.027 DOI: https://doi.org/10.1016/j.trc.2020.01.027
Zhou, T. (2012). Examining location-based services usage from the perspectives of a unified theory of acceptance and use of technology and privacy risk. Journal of Electronic Commerce Research, 13(2), 135.
Zhou, T. (2013). The effect of flow experience on user adoption of mobile TV. Behaviour & Information Technology, 32(3), 263–272. DOI: https://doi.org/10.1080/0144929X.2011.650711
Zhou, T. (2014). An Empirical Examination of Initial Trust in Mobile Payment. Wireless Personal Communications, 77(2), 1519–1531. https://doi.org/10.1007/s11277-013-1596-8 DOI: https://doi.org/10.1007/s11277-013-1596-8
Zhou, T. (2019). The effect of flow experience on users’ social commerce intention. Kybernetes, 49(10), 2349–2363. https://doi.org/10.1108/K-03-2019-0198 DOI: https://doi.org/10.1108/K-03-2019-0198
Zhu, W., Nah, F. F.-H., & Zhao, F. (2003). Factors influencing users’ adoption of mobile computing. In Managing e-commerce and mobile computing technologies (pp. 260–271). IGI Global. DOI: https://doi.org/10.4018/978-1-93177-746-9.ch018
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tazizur Rahman, Mohammad Islam, Abul Khayer, Tania Islam
This work is licensed under a Creative Commons Attribution 4.0 International License.
For all articles published in IJRBS, copyright is retained by the authors. Articles are licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. These conditions allow for maximum use and exposure of the work, while ensuring that the authors receive proper credit.