Modeling stock market return volatility in the presence of structural breaks
Evidence from Nairobi Securities Exchange, Kenya
DOI:
https://doi.org/10.20525/ijrbs.v8i5.308Keywords:
market return volatility, GARCH models, stylized facts, conditional volatilityAbstract
This study sought to model the stock market return volatility at the Nairobi Securities Exchange (NSE) in the presence of structural breaks. Using daily NSE 20 share index for the period 04/01/2010 to 29/12/2017, the market return volatility was modeled using different GARCH type models and taking into account four endogenously identified structural breaks. The market exhibited a non-normal distribution that was leptokurtic and negatively skewed and also showed evidence for ARCH effects, volatility clustering, and volatility persistence. We found that by considering structural breaks, volatility persistence was reduced, while leverage effects were found to lead to explosive volatility. In addition, investors were not rewarded for taking up additional risk since the risk premium was insignificant for the full period. However, during explosive volatility, investors were rewarded for taking up more risk. Moreover, we found that risk premium, leverage effects, and volatility persistence were significantly correlated. The GARCH (1,1) and TGARCH(1,1) models were found to be the best fit models to test for symmetric and asymmetric effects respectively. While the GARCH models were able to provide evidence for the stylized facts in the NSE, we conclude that the presence or absence of these features is period specific. This especially relates to volatility persistence, leverage effects, and risk premium effects. Caution should, therefore, be taken in using a specific GARCH model to forecast market return volatility in Kenya. It is thus imperative to pretest the data before any return volatility forecasting is done.
Downloads
Published
How to Cite
Issue
Section
License
Authors contributing to IJRBS agree to publish their articles under the Creative Commons Attribution- 4.0 International (CC BY 4.0) license, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit, that the work is not used for commercial purposes, and that in the event of reuse or distribution, the terms of this license are made clear. Authors retain the copyright of their work, with first publication rights granted to IJRBS. However, authors are required to transfer copyrights associated with commercial use to the Publisher. The authors agree to the terms of this Copyright Notice, which will apply to this submission if and when it is published by this journal
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other languages, without the written consent of the Publisher. The Editors reserve the right to edit or otherwise alter all contributions, but authors will receive proofs for approval before publication