Greening university practices: empowering eco-conscious behavior, transforming sustainable culture, and shaping greener institutional awareness through strategic green HRM initiatives

Mohammad Yunes Amini (a)*, Zhen Tang (b), Azizullah Besharat (c)

(a) Ph.D. scholar, School of Business, Hohai University, Jiangning Campus, 8 Fochengxi Road, Jiangning District, Nanjing, Jiangsu Province, China
(b) Professor, School of Business, Hohai University, Jiangning District, 8 Fochengxi Road, Jiangning District, Nanjing, Jiangsu Province, China
(c) Ph.D. scholar, School of Agriculture Science and Technology, Hohai University, Jiangning Campus, 8 Fochengxi Road, Jiangning District, Nanjing, Jiangsu Province, China

ABSTRACT

Green human resource management practices are widely accepted and are essential for encouraging sustainable behavior in organizations. We aimed to ascertain the relationship between employees’ eco-friendly behavior and Green HRM practices by employing environmental awareness as a mediator. We analyzed and tested the suggested model employing the PLS-SEM method through SmartPLS 4. The current study employed a quantitative research approach to collect data from 346 actual respondents. From six major public universities in Afghanistan, these participants were selected randomly. Based on the investigation, it was shown that green recruitment and selection, green training and development, green performance management, and green reward and compensation possessed a positive impact on employees’ eco-friendly behavior. Additionally, environmental awareness promotes eco-friendly conduct among the staff. The research provides updated outcomes showing that, through the partially moderating impacts of environmental awareness, green HRM practices in Afghanistan’s public universities both directly and indirectly influence employees’ eco-friendly behavior. The current study is noteworthy since it provides fresh insights into green HRM. Additionally, by examining these relationships and assessing the mediation effects, this work adds to the amount of literature already accessible on environmentally friendly behaviors. Furthermore, current research makes a practical contribution to public universities by suggesting guidelines on how to increase academicians’ awareness of green HRM practices, enhance eco-friendly behavior at work, and develop environmentally friendly behavior.

© 2024 by the authors. Licensee SSBFNET, Istanbul, Turkey. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Environmental challenges have gained increased attention globally in the twenty-first century (Yong et al., 2019; Yusliza et al., 2017; Islam et al., 2020). The major degradation of the environment today is caused by extensive tree cutting, excessive carbon dioxide emissions, the consumption of fossil fuels, and the loss of natural resources due to human and organizational activity. As a result, many businesses concentrate on environmental or “green” challenges, making sure that their regular business practices use less energy by implementing green initiatives. According to Ecer, Pamucar, Mardani, and Alrasheedi (2021), these initiatives include cutting back on carbon emissions, conserving energy by using less electricity and office supplies, recycling materials properly, and shifting to clean and renewable energy sources like solar, wind, and geothermal energy. As a result, implementing environmental principles is a crucial shift that the entire globe needs. Businesses would become more “green and competitive” if they implemented such measures (Herrera and de las Heras-Rosas, 2020).

* Corresponding author. ORCID ID: 0000-0001-9655-7900
© 2024 by the authors. Hosting by SSBFNET. Peer review under responsibility of Center for Strategic Studies in Business and Finance.
https://doi.org/10.20525/ijrbs.v13i1.3149
Specifically, the risks associated with environmental issues have prompted several sectors to concentrate on green performance and start training their workers in recent years. Out of these sectors, the higher education sector contributes significantly to environmental preservation through lower water and energy consumption, better use of consumable and durable goods, and less waste production from paper and plastic. Enhancing workers’ environmental abilities, mindsets, and conduct is a wise strategy for improving an organization’s environmental performance (EP). The functions and procedures of higher education institutions (HEIs) which are functioning as business establishments (Al-Zawahreh et al., 2019) also act like small towns (Saadatian et al., 2013) directly and indirectly influence the environment. The vicinity of HEIs, particularly public HEIs, are large organizations with offices, residence halls, meeting rooms, and even halls that use a lot of resources and energy due to human activity (Gomez and Yin, 2019). Significant amounts of energy are consumed by illumination and cooling equipment due to the usage of the facilities for educational purposes, learning and teaching services, IT, and advanced technology that exist in PHEIs (Abdul-Azeez and Ho, 2016). Additionally, PHEIs have large populations that occupy huge physical spaces and whose layout involves the usage of automobiles to travel throughout the campus are more likely to face problems related to carbon emissions. Due, to their size and population Public Higher Education Institutions (PHEIs) produce an amount of waste including plastic and paper items. Improper management of waste could potentially harm the environment, which is something to be cautious of (Tangwanichagapong et al., 2017; Anwar et al., 2020).

Green human resource management (GHRM) has gained attention. Become a popular topic in today’s business world. The increasing global awareness of issues and sustainable development has made it an important area of research (Chaudhary, 2019). Understanding the influence of GHRM, on employee’s eco-friendly behavior (EFB) is crucial for organizations as it impacts the performance of businesses aiming to adopt ecological sustainability (Kim et al., 2019). GHRM plays an important role in promoting eco-friendly behavior, among workers in the workplace (Saeed et al., 2019). Opatha and Arulrajah (2014) define GHRM as a set of guidelines, procedures, and mechanisms that encourage employees to adopt practices for the betterment of society, nature, and business. Consequently, businesses are gradually but steadily implementing GHRM to foster EFB in their workplaces (Dumont et al., 2017). GHRM has investigated, industries, such as the tourism sector (Pham, Thanh, Tučková, and Thyu 2020; Kim et al., 2019) sports centers (Gholami et al. 2016) healthcare sector (Saeed et al., 2019; Pinzone et al., 2019; Jia et al., 2018) and information technology sector (Ojo and Raman 2019). While there are indications that GHRM practices align with EFB, recent studies have shed light on gaps. Hence, it is thus crucial to understand how GHRM may influence employees' EFB in Afghanistan, especially in PHEIs which no other research focused on before.

Research on the impact of GHRM on employee behavior is still in its infancy (Fawehinmi, 2019), and it should be done in an alternative organizational setting, like the PHEIs. In addition, more research is necessary to comprehend the underlying mechanisms involving GHRM, environmental awareness (EA), and EFB Ren et al. (2018). Previous research (Saeed et al., 2019; Kim et al., 2019; Dumont et al., 2017) has examined the connection between GHRM and EFB, but researchers have not given much consideration to the mediating role of EA concerning GHRM–EFB interaction, particularly PHEIs. Ren et al. (2018) argue that there has been little emphasis on the influence of EA on GHRM practices. Many maintain that even with the implementation of GHRM procedures, workers won't adhere to environmentally friendly behavior since they don't have the necessary understanding.

Prior research on GHRM has focused largely on the business sector compared to academic institutions (Anwar et al., 2020). Furthermore, considering the significance of Asian economic development, a significant vacuum needs to be filled in future research since the majority of the literature on GHRM has been written by Western scholars (Yong et al., 2019). Moreover, a study on GHRM in Afghanistan is however insufficient and needs to be done in an alternative organizational environment, such as PHEIs. In light of the Afghanistan situation, GHRM is a commendable idea, and certain questions must be answered: What is the overall consensus among academicians in Afghanistan PHEIs regarding the notion of GHRM? What effects do GHRM activities have on managers' and employees' EFB through the use of EA in Afghanistan PHEIs? What obstacles do Afghan managers face while trying to put GHRM practices into practice? What is the current strategy of Afghan Executives to encourage GHRM practices in Afghanistan PHEIs?

This study aims to find out whether GHRM practices—such as green recruitment and selection (GRS), green training and development (GTD), green performance management (GPM), and green reward and compensation (GRC) affect EFB through the EA of academic and non-academic employees in six large public universities of Afghanistan namely: Kabul, Nangarhar, Herat, Mazar, Kandahar, and Farah University. Consequently, by examining how GHRM influences the EFB mediating function of EA of employees, academicians, and managers of Afghanistan PHEIs, this investigation seeks to close the knowledge gap created by earlier research and further the understanding of environmentally friendly behavior.

The study's findings can theoretically contribute to the literature on green performance and GHRM since they shed light on how environmental management (EM), GHRM practices, and human resources are integrated—all of which are important elements in an organization's decision to become green. Additionally, as recommended by Renwick et al. (2013), this study uses the Ability Motivation, Opportunity AMO theoretical framework developed by Appelbaum et al. (2000) to explain GHRM and to support the creation of the hypotheses assessing the mediating and direct relationships through which GHRM influences EFB. Furthermore, the findings of this research will offer additional data and knowledge on GHRM and its effects on PHEIs in Afghanistan's rising economy, which have received less attention and understanding up to this point. It is anticipated that gaining knowledge of the Afghanistan context will significantly advance the multidisciplinary fields of GHRM and EFB in the context of higher education. This study intends to demonstrate how GHRM policies may be successfully applied in PHEIs to create a green organizational culture.
and motivate workers to promote green behaviors (GBs). The study’s managerial significance includes how PHEIs might encourage GBs among workers by creating GHRM practices, supporting environment management initiatives, and implementing other GHRM-related procedures.

This research outlines in the following, literature review and theoretical linkage between GHRM Practices, EA, and EFB and processes to the development of hypotheses. Next, we discuss methods that are used in collecting and analyzing data to empirically address the question, followed by testing the hypothesis through the SEM method, presentation of the findings, and interoperating the results. The paper finally ends with a debate and conclusion of the implications of the research findings.

Literature Review

Theoretical foundation

Ability, Motivation, and Opportunities AMO theory proposed by Appelbaum et al. (2000) forms the theoretical foundation for the present study. The AMO theory illustrates how an organization can enhance its profit, excellence, and productivity by developing its personnel Appelbaum et al. (2000). The AMO theory suggests that ability, motivation, and opportunity play a role, in enhancing employee performance. Boselie et al. (2005) propose an evaluation framework for assessing the impact of Green HRM on HR activities aiming to improve performance. It is emphasized that HR procedures influence employee attitudes and overall performance as, per the AMO principle. The AMO theory explains how implementing HRM practices can enhance an organization's performance and have environmental outcomes (Boselie et al., 2005). According to this theory, each element of AMO has the potential to positively impact EFB. For instance, an employee's GRS results in recruiting employees with EA and engaging in EFB. Such abilities can be applied in original and creative ways to enhance EFB. The organization’s GTD may also be the source of these green skills. Employees with greater skills may also be more adept at green entrepreneurship and be able to think of more creative solutions for environmental issues. Furthermore, since they are aware of what is desired of them, employees will feel much more motivated to succeed when their performance is evaluated and rewarded using an EFB. Opportunities encompass facilities and processes that the company employs to contribute to or produce the EFB of employees, such as creatively recycling materials (Rayner & Morgan, 2017). According to studies, GHRM encourages workers’ EFB at work (Saeed et al., 2019) by providing them with the tools they need to execute EFB and the confidence that management will support them in putting GRS and GTD into practice. GPM and GRC for workers encourage them to participate in green initiatives for companies. According to Rayner and Morgan (2017), GHRM ought to make sure that employees’ ability, motivation, opportunity, and EA are developed so they can carry out the intended EFB at work.

According to this study, the association between GHRM practices and employees’ EFB in Afghanistan PHEIs may be explained by the AMO theory. In addition, GHRM procedures have the potential to improve EFB. As a result, GHRM will encourage the growth of a sustainable culture by inspiring workers to be environmentally conscious. As a result, the current study applies AMO theory to explain how GHRM affects EFB through the mechanism of employee EA, giving academic organizations a competitive edge.

GHRM Practices and EFB

Organizations that encourage sustainable behavior among their staff can improve their sustainability goals. EFB is one of the tactics businesses use to improve their EP and meet sustainability goals (DuBois & Debois, 2012). EFB are activities that workers perform consciously to improve the well-being of the environment or lessen the negative effects of human activity on it. Research has demonstrated that personnel who possess a thorough understanding of environmental concerns and obstacles are more likely to act in an ecologically beneficial way (Unsworth, Dmitrieva, & Adriasona, 2013; Juarez-Najera et al., 2010). EFB can be described as the actions taken by employees to positively impact the environment (Unsworth et al., 2013). EFB involves efforts to minimize the consequences of human activities, on the natural environment and can serve as an effective strategy for promoting sustainability in the workplace (Kollmuss & Agyeman 2002). According to Stern (2000), EFB refers to behaviors carried out by employees that help mitigate effects. These behaviors encompass activities such as recycling, waste reduction, energy conservation, responsible resource usage, and water preservation (Norton et al., 2015). Incorporating EFB into job responsibilities is crucial in PHEIs where challenges like waste generation, energy consumption, and water usage need attention. Jiang et al. (2012) highlight that HRM emphasizes employees’ attitudes and behaviors regarding their work. Therefore, HRM plays a role, in shaping employee behavior and cultivating a mindset aligned with the company’s overall sustainability goals.

GHRM implements measures to promote awareness and influence the attitudes, perspectives, and behaviors of employees in the workplace (Saeed et al., 2019). Additionally, GHRM practices actively seek employee feedback on ways to improve the environmental management process. This allows workers to understand how the company fosters values through training, performance evaluations, commitments, support, incentives, and recognition (Blok et al. 2015). By encouraging an eco-culture GHRM initiatives motivate employees to engage in projects. The practices of GHRM also shape employee values and their EFB within the organization (Tang et al., 2018). Through strategies, like GRS GTD, GPM, and GRC, GHRM emphasizes the company’s efforts to establish a long-term relationship, with its employees while creating a green environment (Pellegrini et al., 2018). It has been found that GHRM significantly influences employee attitudes and EFB within organizations according to research studies conducted by (Kim et al. 2019; Dumont et al. 2017; and Saeed et al. 2019).
Based on the AMO theory, Human Resource Management can contribute to promoting performance within an organization. This can be achieved by attracting and nurturing individuals who align with values encouraging motivation and commitment, through green-oriented approaches, rewards, and effective performance management. Additionally providing opportunities for employees to engage in knowledge-sharing and collaborative problem-solving activities through employee engagement initiatives further supports this objective (Fawehinmi et al., 2019).

The majority of GHRM literature is written about industrial businesses; however, GHRM's contributions to service industries, including PHIs, have not gotten as much attention (Jabbour et al., 2013). An analysis of the association between GHRM practices and EFB was conducted using the AMO theory. Furthermore, as the AMO theory indicates, HR practices may potentially improve an individual's EFB. Many researchers believe that additional study is necessary for other organizational functions as well, as there hasn't been much quantitative research done in a GHRM setting in these areas. However, there is a significant vacuum in the management of environmental effects in developing countries, which requires more investigation (Haider et al. 2015). Furthermore, GHRM ought to be investigated concerning other fields and cross-functions, such as EFB, in advanced research. A company's employees can be encouraged to perform EFB and to establish an environmentally friendly, resource-efficient, and socially responsible work environment by implementing GHRM practices, which include GRS, GTD, GPM, and GRC (Ren, 2019). The effect of GHRM practices as a vital component of EFB will be evaluated and identified separately in this study. These measures, which support the advancement of an eco-friendly workplace, include GRS, GTD, GPM, and GRC (Yong, Yusliza, Ramayah, & Fawehinmi, 2019).

Green Recruitment and Selection

Organizations carefully try to contain job description that highlights diverse ecological concerns and practices associated with tasks and duties of the advertised or vacant position (D. Renwick et al. 2008). GRS entails recruiting and choosing candidates who are devoted to addressing environmental challenges and who are interested in environmental concerns (Saed et al., 2019). It is the most fundamental and focused GHRM practice that, in addition to increasing the EFB, additionally enhances the organization's standing and overall well-being. Those who perform better in this area can be chosen, and the personnel recruitment and selection procedure should place a strong emphasis on green criteria (Saed et al., 2019).

Reputable organizations typically draw a larger pool of applicants. Candidates who are particularly interested in environmental issues tend to be attracted to organizations with an excellent record in this area. As a result, the organization can simply assemble the best-skilled applicants who have an interest in environmental issues (Bauer et al., 2012). Employers who want to uphold their sustainability goals must select workers who demonstrate EFB and an intention to participate in pro-environmental initiatives (Ramón-Jerónimo et al., 2019). Businesses could publicize their green image, EP, and sustainability practices to attract candidates to apply for vacant positions. Therefore, according to Chaudhary (2019), the job description for a particular role should outline the environmental obligations connected with that position along with the skills and knowledge candidates must possess to perform environmental activities. A greater number of excellent candidates are attracted to an organization when recruitment is focused on sustainable goals because it influences employees' environmental concerns, promotes a greener workforce, and highlights the organization's superior EFB (Zibarrasa & Coan, 2015; Islam et al., 2020). As a result, GRS is a vital part of GHRM practices; it highlights the necessity of hiring employees who care about environmental issues, which could improve EFB (Zibarrasa & Coan, 2015). Drawing on the aforementioned argument, we create:

H1a: GRS has a positive impact on EFB.

Green Training and Development

GTD is crucial for carrying out efficient EM-related activities and cleaner production, as well as helping an organization achieve sustainable development (Pinzone et al. 2019). To achieve an organization's environmental goals, a set of initiatives known as GTD can inspire and improve workers' knowledge, awareness, and abilities to protect the environment (Saed et al., 2019). Green training is a way for employees to enhance their knowledge and skills while also fostering a sense of responsibility, towards the environment. It encourages employees to be dedicated to goals, which in turn improves the performance of the environmental management system (Chander et al., 2020). By promoting training workers are encouraged to make conscious decisions within their organizations. They learn about waste management identify sources of pollution and develop environmental awareness. To enhance employees understanding of practices at work it is advisable to provide green training alongside other educational initiatives. This helps employees gain confidence in their ability to contribute towards the organization’s sustainability objectives. Following the AMO theory Renwick et al. (2013) suggest that green training is a human resource practice, for promoting eco-friendly behavior. Consequently, staff training improves their comprehension of diverse environmental challenges and encourages them to use EFBs (Baumgartner and Winter, 2014). Workers get to know about EFB activities and recognize the value of environmental protection to a larger extent by conducting education and green training programs. Additionally, this would empower and inspire them to take part in environmental projects and make them more aware of environmental challenges (Saed et al., 2019).

The effects of GTD have been documented in earlier research when individuals receive instruction concerning recognizing environmental problems and overcoming them. It gives managers and staff knowledge of how different workplace activities, policies, and practices can affect the environment. Additionally, it strengthens their critical thinking skills to evaluate.
difficult environmental issues and holds them accountable for accomplishing environmental objectives (Pinzone et al., 2019). According to Ren et al. (2018), proper EFB is necessary for recruiting green talents and motivating employees to exhibit EFB by taking part in green initiatives. Employees with a vested interest in their jobs are emotionally more prone to display EFB. Hence, the advancement of employees’ EFB at work is dependent upon the organizational employees' GTD involvement activities. As a result, the following theory was proposed:

H1b: GTD has a positive impact on EFB

Green Performance Management

An approach termed “GPM” assesses workers’ performance concerning environmental behaviors (Saeed et al., 2019). In addition to contributing to EFB, GPM is also involved in “the appraisal and recording of employees' EP throughout their tenure in an organization while offering them comments regarding their performance to avoid unfavorable behaviors or reward outstanding behavior.” For effective performance management, organizations need to integrate EM efforts into their assessment criteria. Workers may be willing to take on additional responsibility as a way to show their loyalty to the organization and increase their desire to stay, which supports EFB as a performance management strategy that could improve growth opportunities. Human resource managers assess workers' work regardless of whether they meet environmental goals or not. According to Zibarras and Coan (2015), EP indicators are advantageous to HR managers and businesses because they hold employees accountable and require them to maintain their EP to satisfy particular requirements. As a result, employees can also enhance their EFB.

Prior studies indicate that an employee's GPM and financial and moral recognition draw top candidates committed to the business's EM (Ahmed et al. 2019; Guerci et al. 2015). Benefits and remuneration integrate employee interests with corporate aims to enhance EFB (Jackson et al. 2011). Furthermore, previous research indicates that integrating environmental considerations into employees' objectives and duties and assessing their performance in line with these objectives can help organizations meet their overall environmental targets. Employee motivation to meet green goals can be fostered via performance reviews related to these objectives (Islam et al., 2020; Likhitkar & Verma, 2017). In summary, GPM develops ecological performance measures to establish a set of green standards encompassing a range of subjects such as carbon emission reduction, environmental occurrences, ecological duties, and environmental policy and concern awareness (Saeed et al., 2019). To encourage them to take on new projects, employees who continually improve their performance and meet all of the organization's environmental goals should be praised (Likhitkar & Verma, 2017). To achieve green performance goals, an organization should let its employees know that EFB is a key player in the process of decision-making and incorporate it into the scope of the evaluation (Zhang et al., 2019). Following performance reviews, HR managers may discuss with workers concerning ways to enhance EP and reduce waste (Roscoe et al., 2019). As a result, we developed the following hypothesis:

H1c: GPM has a positive impact on EFB

Green Reward and Compensation

GRC is a framework that uses monetary and non-monetary incentives to attract, keep, and inspire workers to support environmental objectives (Saeed et al., 2019). Similarly, GRC could contribute to the advancement of EFB by implementing an approach that includes incentives non-monetary for employees who play a crucial role in enhancing environmental management. Organizations have utilized methods such as granting time off, cash rewards, and career advancements to motivate individuals and teams to actively engage in environmental protection efforts (Stanwick and Stanwick 2013). Recognizing employees dedicated contributions through rewards is a part of the GRC process aimed at fostering improvement, in EFB. According to Likhitkar and Verma (2017), it is essential to provide employees with a combination of nonfinancial and financial incentives to encourage them in accomplishing their eco-friendly behaviors. Financial incentives include profit-sharing, tax deductions, and bonuses. In the meantime, non-financial rewards such as green praise, recognition, awards, and prizes can be awarded based on the achievements of the employees (Anjurjah et al., 2016; Zibarrasa & Coan, 2015). A combination of financial and non-financial rewards works more effectively than financial awards alone (Renwick et al., 2013; Jabbour et al., 2010). In a similar vein, Saeed et al. (2019) claimed that mixing monetary and non-monetary rewards works better than utilizing only one kind of reward to motivate personnel.

Nonetheless, prior research indicates that developing a suitable EP-based incentive system can be challenging (Zibarrasa & Coan, 2015; Saeed et al., 2019). Additionally, EP is linked to the remuneration that workers and managers receive (Roscoe et al., 2019). According to findings presented by Fernandez, Junquera, and Ordiz (2003), companies that awarded top managers for meeting organizational environmental goals typically provided more EP than those that merely offered standard wages to senior managers without any additional incentives or pay. Different rewards can inspire people in different ways. As a result, comprehensive green reward schemes ought to be focused on the participants (Zibarrasa & Coan, 2015). In conclusion, GRC encourages workers to participate in more environmentally friendly endeavors. Employee rewards encourage individuals to carry out their green initiatives with enthusiasm and without reluctance, which catalyzes the process of going green. Ultimately, the organization has acknowledged and valued their work. Environmental activities and concerns can be highlighted in a way that eventually strengthens and increases the EFB of workers from hiring practices to worker empowerment. Thus, the EFB of workers is greatly influenced by GHRM practices. Based on the above arguments, the following assumptions were put out in this study:

H1d. GRC has a positive influence on EFB
GHRM and EA

Environmental awareness (EA) is a multifaceted concept that has been shown to impact an individual's knowledge, information, attitudes, tendencies, intentions, behaviors, attempts, and actions (Wan, Chan, & Huang, 2017). EA focuses on the "4 R’s": reuse, reduce, rethink, and recycle (Gabarda-Mallorquí, Fraguell, & Ribas, 2018). Fostering EA necessitates a thorough understanding of environmental concerns. This study highlights the significance of EA as a strategic instrument for raising awareness and greening organizations and society at large, considering the fundamental nature of environmental sustainability and EA (Benevene & Buonomo, 2020). A deeper comprehension of the significance of environmental preservation for human well-being results from higher EA. A pro-environmentalist or ecologically conscious individual participates in a wide range of EFB activities and holds particular beliefs and values (Yeh, Ma, & Huan, 2016).

Employees who understand environmental preservation are more aware of the value and benefits of workplace greening. To support EM, GHRM must encourage workers to take part in EM efforts by developing their knowledge, awareness, and attitudes (Fawehinmi et al., 2020). According to Yusoff, Nejati, Kee, and Amran (2020), GHRM is defined as HRM procedures and guidelines that support an organization's operations while also serving as a means of minimizing the negative effects of anti-environmental actions within the firm. This is set up and intended to optimize worker performance to help companies achieve their strategic objectives. The importance of GHRM in promoting sustainability which entails comprehending environmental issues as well as economic and social performance was highlighted by Dubey and Verma, (2018). They also talked about how these initiatives might promote sustainable practices and increase employee EA. GHRM emphasizes the organizations' efforts to establish a sustainable work environment by focusing on performance management, training, rewards, and recruitment (Pellegrini et al., 2018). The practices of GRS, GTD, GPM, and GRC, within EA are influenced by GHRM strategies as they work together to enhance employees’ overall employees’ environmental awareness (Moraes et al., 2019). Companies that prioritize GHRM have outperformed their competitors (Ren et al., 2018). To enhance employees’ overall effectiveness the company can support environmental conservation initiatives provide training opportunities implement conscious recruitment and hiring policies manage performance effectively and offer incentives, for engagement (Saeed et al., 2019).

Various studies have shown that the motivation and engagement of employees can be influenced by green human resource management (Tang et al., 2018). This is because GHRM, which encompasses green recruitment and selection, green training and development, green performance management, and green rewards and compensation contributes to enhancing employees’ motivation and engagement (Renwick et al., 2013; Moraes et al., 2019). Regarding GRS the objective is to attract professionals who align with the company's eco-friendly image. Research has indicated a correlation, between an organization’s reputation and its ability to attract talented individuals who are interested in working for environmentally responsible firms (Guerci et al., 2015). Previous studies have highlighted that organizations with an image are successful in attracting highly qualified candidates who are dedicated, to the environmental mission of the company (e.g., Guerci et al. 2015; Shah 2019). By implementing a selection process to hire individuals who exhibit motivation and engagement organizations can potentially transition towards eco-friendly behaviors in the long run (Kim et al. 2019). The selection criteria need to be predicated on the greening parameters in addition to drawing in eligible applicants. Interviewee's perspectives, values, expertise, and interest in EA and performance can be assessed by asking them environment-related questions during the interview process (Renwick, Redman, Maguire et al., 2008b). To support company attempts toward long-term sustainability, employers are required to verify that job seekers possess the necessary environmental abilities (Wehrmeyer 2017). To ensure the success of such programs, recruiters also need to be taught in candidate evaluation assessments (Pinzone et al. 2019). This will allow them to match applicants who are devoted to and informed about EM practices with green selection criteria. Therefore, GRS is an essential GHRM procedure that could assist the company by making employees care for EA.

According to Renwick, Redman, and Maguire (2013), the GHRM technique is regarded as one of the greatest ways to assist firms in implementing environmentally friendly programs, particularly by employee GTD initiatives to have the skill to identify environmental concerns in the organization. employees' EA, attitudes, abilities, and knowledge are improved by GTD tactics (Gim et al. 2022). Additionally, by employing green working methods to solve issues as they arise, they assist workers in developing a greater awareness of environmental issues and green ideals (Aboramadan et al. 2022). According to Pham, Hoang, and Phan (2019), GHRM focuses on teaching workers green practices and improving their environmental awareness, efficiency, involvement, and EFB. Each staff member should receive green training in addition to other educational initiatives to raise their understanding of EFB at work. The staff become more confident that they can achieve the organization's greening goals as a result. Thus, GTD improves workers' comprehension of EA and encourages them to use EFBs (Baumgartner and Winter, 2014).

Workers could learn the information and abilities needed to advance their ingenuity and inventiveness. They are made aware of the connections between their actions and the environment. This enables individuals to identify and respond to attitudes allowing them to actively contribute towards creating an eco-environment. Consequently, implementing performance management can aid employees in aligning their efforts, with the objectives of the organization (Sepahvand et al., 2022). Furthermore, it is necessary to understand how GHRM functions regarding sustainability issues, such as creating a GRC, making better use of resources, encouraging environmental assessment, reducing negative environmental effects, and inspiring employees to reduce waste (Rayner and Morgan 2018). Employee awareness of the value and feasibility of greening workplace is increased when an organization promotes, GTD, ecological GRS, GPM, and GRC policies (Saeed et al., 2019; Renwick et al., 2013; Zhang et al., 2019). We therefore aim to test the following hypothesis.
H2a: GRS positively influences EA.
H2b: GTD positively influences EA.
H2c: GPM positively influences EA.
H2d: GRC positively influences EA.

H3: EA positively influences EFB.

Mediating Role of EA

GHRM practices are centered on raising EA and attention to sustainability issues (Dumont et al., 2017; Pham, Hoang, & Phan, 2019). Making employees aware of the complexity of EM, including which measures to implement, how EM functions, and how it benefits the environment, is the primary goal of GHRM (Ahmad, 2015). Eco-friendly behavior refers to deliberate actions made by workers to minimize the harm that human activity causes to the environment or to enhance its quality. The organization can encourage EFB to reduce adverse effects on the environment and increase beneficial effects (Norton, Zacher, Parker, & Ashkanasy, 2017). Workers could utilize green practices when performing their allocated tasks. Furthermore, with organizational support, they can modify their workplace regulations in a more comprehensive and environmentally friendly way (Ramus & Steger, 2000).

Even though numerous EM researchers have looked into EM procedures for EFB and waste reduction across various industries. However, as these behaviors are not legally defined and acknowledged within the business and are not a part of its regular operations, EFB might not be directly impacted by GHRM Practices. Instead, they transcend well-defined organizational frameworks and can be impacted by workers' understanding of the company's green culture, their degree of EA, the organization's green training, and their motivation to implement EFB (Dumont et al., 2017; Chaudhary, 2019). According to Saeed et al. (2019), greater EA improves the impact of GHRM practices on EFB. Furthermore, Ren et al. (2018) emphasized how employee cognition affects GHRM and how well EFB performs to support EMS. GHRM has an impact on EFB by raising employee EA, knowledge, and skills, which motivates people to take part in EFB activities like offering eco-friendly training and putting green projects into action (Chaudhary, 2019). According to Rayner and Morgan (2018), an organization's ability, motivation, and opportunities AMO can improve EA and empower employees to carry out EFB. According to Chan, Hon, Chan, and Okumus (2014), EA is crucial because its absence could result in the avoidance of EFB. Anwar et al. (2020) and Chaudhary (2019) found a substantial association between GHRM and proactive adoption of green measures. Businesses utilize GHRM to enhance employees' EA which leads to EFB. When environmental awareness is raised and made available, people start to behave more sustainably and incorporate it into their daily jobs. This can even spark proactive EFB and environmental projects in the workplace. Businesses employ a range of tactics to promote GHRM practices. The GRS, GTD, GPM, and GRC are pertinent to this research. Encouraging EFB requires careful hiring and selecting EA personnel and pro-environmental rewards, green performance management, and environmental training (Pham et al. 2019).

Nevertheless, it appears that insufficient studies have been conducted to connect GHRM to employees' EFB through EA, irrespective of the specific technique for improving EFB (Zhang et al., 2019). Therefore, further research ought to be done to comprehend the mechanisms underpinning EFB and GHRM, including EA. Furthermore, these elements ought to be investigated in other organizational settings, including the realm of higher education. As a result, we propose that GHRM implementation in Afghanistan PHEIs leads to the EA of academic and non-academic staff and subsequently leads to their EFB. In connection with this, we propose that GHRM Practices enhance workers' EFB through employees' EA in the workplace; so, we put forth these hypotheses:

H4a: EA mediates the effects of GRS on EFB.
H4b: EA mediates the impact of GTD on EFB.
H4c: EA mediates the effect of GPM on EFB.
H4d: EA mediates the impact of GRC on EFB.

Research and Methodology

Sample, procedures, and questionnaire design

In the present study, quantitative analysis was utilized due to its potential for estimating the extent of phenomena. It is therefore appropriate for this study to use a quantitative strategy with a random sampling technique to fill the questionnaire, as this approach minimizes selection bias because it includes data from a different population group and allows conclusions to be drawn from a wider range of individuals Saunders et al. (2009).

To evaluate GHRM's effect on EFB, a survey questionnaire was utilized. While designing and building the questionnaire, the previous literature was examined. The authors used the formula (Krejcie & Morgan, 1970) to calculate the sample size (346) for the 3500 respondents in the population. the study distributed the questionnaire to 30% additional (104) individuals. Consequently, we circulated 450 survey questionnaires, and 364 of them were returned, yielding an 80.8% response rate. 13 responses were eliminated because of incomplete data; 346 responses were used in the study's data analysis, according to Krejcie & Morgan (1970). Since the
total number of replies in this study is greater than the minimal threshold of 103, as recommended by Cohen (1992) utilizing power analysis, the 346 total responses satisfy the minimum sample size criterion for PLS-SEM analysis. Executives in charge of several universities were contacted by phone and email to gather data. Following a conversation on the study's justification, they granted the request. The well-educated academics and non-academicians from various prominent Afghan universities made up the study's target population.

In order to protect the privacy of respondents and the validity of the results, it is appropriate to follow the Standard Operating Procedure when conducting an online quantitative survey. Thus, to gather data, we used an online survey with a Google Form questionnaire. After making the necessary language edits and changes in response to the comments received, the completed questionnaire was subsequently utilized to gather data from Six PHEIs in Afghanistan including Kabul University, Nangarhar University, Herat University, Mazar University, Kandahar University, and Farah University. The responders were selected from the aforementioned universities located in six major strategic regions. The questionnaire was divided into four sections. Section A included the employee's demographic data, such as gender, age, qualification, designation, and tenure; the following sections addressed the GHRM Practices (GRS, GTD, GPM, GRC), EA, and EFB. The 15–20-minute questionnaire was short, direct, and easy to complete. The respondents were given a five-week window, from October 21, 2023, to December 2, 2023, to complete and submit the questionnaires. A 33-item survey was administered to the participants in order to measure their understanding of EFB, EA, and four distinct GHRM practices (GRS, GTD, GPM, and GRC), used in public universities. Every respondent was given clear instructions on how to participate in order to minimize the possibility of bias and avoid common method variance issues. In addition, we urged respondents to please provide their most honest responses and reminded them that their participation in the survey is voluntary, confidential, and anonymous. Fig. 1 illustrates the relationship between GRS, GTD, GPM, GRC, EA, and employees' EFBs. According to the concept, the availability of GHRM practices immediately stimulates employees' EFBs. GHRM encourages EA to influence EFB indirectly. These links all suggest that EA mediates the relationship between GHRM and EFB.

Figure 1: conceptual model

Measurement Development

Variables including GHRM practices (GRS, GTD, GPM, GRC), EA, and EFB were included in the study through an in-depth literature review. Only those items that were assessed using widely recognized techniques based on prior research were taken into account in the study. Furthermore, every scale element has been carefully constructed to reduce common method bias (CMB) issues. The survey scale measures were developed in English and expertly translated into Pashto and Dari, the official languages of Afghanistan. When translating the questionnaire, we employed Brislin's (1986) back-translation technique. Five-point Likert-type scales, with 1 denoting "strongly disagree" and 5 denoting "strongly agree," were used to measure each response. We used 20 items for GHRM practices, such as GRC, GPM, GRS, and GTD, which were taken from studies by Tang et al. (2018) and Shah (2019).
Employees' eco-friendly behavior (EFB) was assessed using the seven-item Kim et al. (2019) measure. We employed the six-item Environmental Awareness (EA) scale developed by Gatersleben et al. (2002).

Data Analysis Strategy

Descriptive statistics were explained in detail utilizing data analysis using SPSS version 25. Furthermore, we utilized Smart PLS version 4 to explore the measurement model and structure model. Bootstrapping hypotheses were employed to assess the validity and reliability of the measures and the structural model, as well as to look into the direct and indirect effects of GHRM Practices on EFB. To validate the instrument used to assess the components, the measurement model's reliability scores were evaluated using confirmatory factor analysis (CFA) (Hair et al., 2018; Fornell and Larcker, 1981). A consistent PLS-SEM was applied to verify the study's hypothesized model and evaluate measurement reliability and validity since it is frequently utilized in numerous scientific fields, particularly in the HRM field (Hair et al., 2018). The mediation process was carried out using a Consistent PLS bootstrapping with 10,000 samples at a 95% confidence range to test the causal relationships of the studied hypotheses.

Results

Demographic information of respondents

We received 364 survey questionnaires out of 450 circulated. After excluding the 13 surveys with missing data, 346 questionnaires were used in our survey. Out of 346 participants, the results showed that 19.4 % (67) were Female and 80.6 % (279) were Male (see Table 1). In terms of respondents' age, the result revealed that 8.7 % (30) individuals were between the ages of 18 and 27, and 42.8 % (148) indicated the majority of participants at the age limit of (28-37) years. Further 30.6 % (106) were between the ages of 38 to 47, and the remaining, 13 % (45) and 4.9 % (17) individuals were between the ages of 48 to 57 and above 58 years of age. In terms of designation, results showed a majority of academicians 70.2 % (243) out of 346 individuals and the remaining 29.8 % (103) were non-academic employees. In terms of participants' educational level, the majority of workers (40.8 % of 141) held a Master's degree, followed by 29.8 % (103) with a Bachelor's degree. Of the remaining Participants, 16.2 % (56) held a Ph.D. or above, 10.4 % (36) obtained plus two years diploma, and 2.9 % (10) had finished high school.

The findings regarding the individual’s length of service or tenure revealed that the majority of workers 37.9 % (131) had between one to five years of experience, followed by 37% (128) with six to ten years, and the remaining 13 % (45), 5.2 % (18), 5.5 % (19) and 1.4% (5) with 11-15, 16,20, 21-25 and above 25 years of experience.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Category</th>
<th>F</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>18-27</td>
<td>30</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>28-37</td>
<td>148</td>
<td>42.8</td>
</tr>
<tr>
<td></td>
<td>38-47</td>
<td>106</td>
<td>30.6</td>
</tr>
<tr>
<td></td>
<td>48-57</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>58 or above</td>
<td>17</td>
<td>4.9</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>67</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>279</td>
<td>80.6</td>
</tr>
<tr>
<td>Designation</td>
<td>Academician</td>
<td>243</td>
<td>70.2</td>
</tr>
<tr>
<td></td>
<td>Non-Academician</td>
<td>103</td>
<td>29.8</td>
</tr>
<tr>
<td>Education</td>
<td>High School degree</td>
<td>10</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>Plus 2 years diploma</td>
<td>36</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>Bachelors' degree</td>
<td>103</td>
<td>29.8</td>
</tr>
<tr>
<td></td>
<td>Masters’ degree</td>
<td>141</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>PH.D. or above</td>
<td>56</td>
<td>16.2</td>
</tr>
<tr>
<td>Tenure</td>
<td>5 or less</td>
<td>131</td>
<td>37.9</td>
</tr>
<tr>
<td></td>
<td>6-10</td>
<td>128</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>11-15</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>16-20</td>
<td>18</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>21-25</td>
<td>19</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Above 25</td>
<td>5</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Source: author

Note: F = Frequency, % = Percentage, plus two years diploma refers to people with a lower university degree and higher high school degree
Common method bias

In the present study, CMB was assessed using the VIF values of the inner model (see Table 2). If the variance inflation factor (VIF) is greater than 3.3, a model may have common method bias contamination which denotes pathological collinearity (Kock 2015). All of the inner model's VIFs, as found by a thorough collinearity test, in the current study are less than the minimum threshold suggested by (Hair et al., 2011; Kock 2015) and the model can be considered free of CMB. Considering this, our study's data is therefore free of CMB.

Table 2: VIF inner model

<table>
<thead>
<tr>
<th>Variables</th>
<th>VIF values</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA -> EFB</td>
<td>2.862</td>
</tr>
<tr>
<td>GPM -> EA</td>
<td>2.971</td>
</tr>
<tr>
<td>GPM -> EFB</td>
<td>3.308</td>
</tr>
<tr>
<td>GRC -> EA</td>
<td>3.196</td>
</tr>
<tr>
<td>GRC -> EFB</td>
<td>3.276</td>
</tr>
<tr>
<td>GRS -> EA</td>
<td>2.995</td>
</tr>
<tr>
<td>GRS -> EFB</td>
<td>3.103</td>
</tr>
<tr>
<td>GTD -> EA</td>
<td>2.688</td>
</tr>
<tr>
<td>GTD -> EFB</td>
<td>2.794</td>
</tr>
</tbody>
</table>

Source: author

Note: EA= Environmental awareness; EFB= Eco-friendly behaviors; GRS= green recruitment and selection; GTD= green training and development; GPM= green performance management; and GRC= green reward and compensation

Measurement model

To ensure the model fit, we carried out CFA for the variables GRS, GTD, GPM, GRC, EA, and EFB. The fit indices for our model were $\chi^2= 294.215; df=101.000; RMSEA= 0.074; SRMR= 0.043; CFI= 0.926; NFI= 0.892; GFI= 0.905; and \chi^2/df= 2.913$. These results were considered adequate. SRMR and RMSEA values less than 0.08 suggest a significant model fit (Jiang et al., 2002; Hu and Bentler 1999). Moreover, a (CFI) threshold of more than 0.90 indicates a satisfactory match (Marsh and Hocevar, 1985). The NFI value above the minimal 0.50 threshold recommended by Hooper et al. (2008). Finally, a relative (χ^2/df) value of less than five indicates a strong model fit (Schumacker and Lomax 2004). Based on the CFA results, all standardized loading values exceeded the minimal required value of 0.50 (Hair et al., 2011).

The measuring model was assessed to ascertain the constructs' validity and reliability (see Table 3). The majority of the items in this study had substantially higher factor loading values than the minimum required value of 0.70 that was suggested by (Vinzi, Chin, Henseler, & Wang, 2010). For each variable, we calculated the composite reliability (CR) and Cronbach's alpha (CA). Findings indicated that CR and CA values were higher than 0.60 (Bagozzi and Yi, 1988). The respective CR and CA values (see Table: 3) suggested that the variables in the current study achieved reliability. In addition, the convergent validity of the constructs was confirmed by determining the average variance extracted (AVE) value. The AVE readings exceeded the cutoff point of 0.50 (1981, Fornell and Larcker). Thus, convergent validity was also confirmed.
Table 3: Measurement Model

<table>
<thead>
<tr>
<th>Reflective construct</th>
<th>Items</th>
<th>OLs</th>
<th>CA</th>
<th>Rho_A</th>
<th>CR</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green recruitment and selection</td>
<td>GRS1</td>
<td>0.806</td>
<td>0.775</td>
<td>0.775</td>
<td>0.869</td>
<td>0.690</td>
</tr>
<tr>
<td></td>
<td>GRS4</td>
<td>0.846</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRS5</td>
<td>0.839</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green training and development</td>
<td>GTD2</td>
<td>0.774</td>
<td>0.788</td>
<td>0.789</td>
<td>0.863</td>
<td>0.612</td>
</tr>
<tr>
<td></td>
<td>GTD3</td>
<td>0.822</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTD4</td>
<td>0.788</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTD5</td>
<td>0.742</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green performance management</td>
<td>GPM1</td>
<td>0.778</td>
<td>0.771</td>
<td>0.772</td>
<td>0.854</td>
<td>0.593</td>
</tr>
<tr>
<td></td>
<td>GPM2</td>
<td>0.782</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPM4</td>
<td>0.746</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPM5</td>
<td>0.775</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green reward and compensation</td>
<td>GRC1</td>
<td>0.739</td>
<td>0.742</td>
<td>0.744</td>
<td>0.838</td>
<td>0.565</td>
</tr>
<tr>
<td></td>
<td>GRC2</td>
<td>0.796</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRC3</td>
<td>0.766</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRC4</td>
<td>0.702</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental awareness</td>
<td>EA1</td>
<td>0.787</td>
<td>0.715</td>
<td>0.715</td>
<td>0.840</td>
<td>0.637</td>
</tr>
<tr>
<td></td>
<td>EA4</td>
<td>0.783</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EA5</td>
<td>0.823</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eco-friendly behaviors</td>
<td>EFB1</td>
<td>0.785</td>
<td>0.737</td>
<td>0.739</td>
<td>0.836</td>
<td>0.560</td>
</tr>
<tr>
<td></td>
<td>EFB2</td>
<td>0.731</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EFB4</td>
<td>0.742</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EFB5</td>
<td>0.733</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Author

Note: OLs= outer loadings; CA= Cronbach’s alpha; CR= Composite reliability; AVE= Average variance extracted

In total 11 items including GRS2, GRS3, GTD1, GPM3, GRC5, EA2, EA3, EA6, EFB3, EFB6, and EFB7 were removed from the study due to low outer loadings.

Table 4: Fornell & Larcker – criterion

<table>
<thead>
<tr>
<th></th>
<th>EA</th>
<th>EFB</th>
<th>GPM</th>
<th>GRC</th>
<th>GRS</th>
<th>GTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA</td>
<td>0.798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB</td>
<td>0.732</td>
<td>0.759</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPM</td>
<td>0.752</td>
<td>0.757</td>
<td>0.770</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRC</td>
<td>0.714</td>
<td>0.748</td>
<td>0.750</td>
<td>0.761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRS</td>
<td>0.714</td>
<td>0.726</td>
<td>0.745</td>
<td>0.751</td>
<td>0.830</td>
<td></td>
</tr>
<tr>
<td>GTD</td>
<td>0.701</td>
<td>0.754</td>
<td>0.723</td>
<td>0.736</td>
<td>0.711</td>
<td>0.782</td>
</tr>
</tbody>
</table>

Source: Author

Note: Bold and Italics represent the square root of AVE

The square root of AVE for a construct (bold and italicized) was shown to be greater in the present research than its correlation with other constructs. (See Table 4). Therefore, our results provide strong evidence in favor of the advancement of discriminant validity (Fornell & Larcker, 1981).
Table 5: HTMT- criterion

<table>
<thead>
<tr>
<th></th>
<th>EA</th>
<th>FBP</th>
<th>GPM</th>
<th>GRC</th>
<th>GRS</th>
<th>GTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA</td>
<td>0.892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB</td>
<td>0.851</td>
<td>0.806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPM</td>
<td>0.794</td>
<td>0.827</td>
<td>0.845</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRC</td>
<td>0.843</td>
<td>0.805</td>
<td>0.855</td>
<td>0.858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRS</td>
<td>0.792</td>
<td>0.810</td>
<td>0.839</td>
<td>0.830</td>
<td>0.848</td>
<td></td>
</tr>
</tbody>
</table>

Source: Author

HTMT is applied based on an estimate of the correlation between the constructs. Teo et al. (2008) offered a criterion of (0.90 or less). Hence, (see Table 5) the result indicates that the HTMT ratio in the current investigation is below the required threshold of 0.90. Consequently, discriminant validity is established using the HTMT ratio.

Structural model

For properly assessing path coefficients in a reflective PLS-SEM, the researchers used a consistent PLS bootstrapping strategy, a resampling technique (Dijkstra and Henseler, 2015). In particular, 10,000 resamples with a 95% confidence interval were produced by bootstrapping. The inner model VIFs' highest value is (3.3), which fell below the 5.0 criteria (Hair et al., 2011), making it evident that multicollinearity was not an issue for any of the PLS models when applied to a particular set of data. (See Table 6) for a direct relationship between variables.

Table 6: Direct relationships

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Relationship</th>
<th>β</th>
<th>SE</th>
<th>T</th>
<th>P</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1a</td>
<td>GRS -> EFB</td>
<td>0.107</td>
<td>0.050</td>
<td>2.139</td>
<td>***</td>
<td>supported</td>
</tr>
<tr>
<td>H1b</td>
<td>GTD -> EFB</td>
<td>0.264</td>
<td>0.046</td>
<td>5.700</td>
<td>***</td>
<td>supported</td>
</tr>
<tr>
<td>H1c</td>
<td>GPM -> EFB</td>
<td>0.201</td>
<td>0.054</td>
<td>3.718</td>
<td>***</td>
<td>supported</td>
</tr>
<tr>
<td>H1d</td>
<td>GRC -> EFB</td>
<td>0.214</td>
<td>0.062</td>
<td>3.472</td>
<td>***</td>
<td>supported</td>
</tr>
<tr>
<td>H2a</td>
<td>GRS -> EA</td>
<td>0.194</td>
<td>0.050</td>
<td>3.881</td>
<td>***</td>
<td>supported</td>
</tr>
<tr>
<td>H2b</td>
<td>GTD -> EA</td>
<td>0.192</td>
<td>0.049</td>
<td>3.961</td>
<td>***</td>
<td>supported</td>
</tr>
<tr>
<td>H2c</td>
<td>GPM -> EA</td>
<td>0.343</td>
<td>0.050</td>
<td>6.867</td>
<td>***</td>
<td>supported</td>
</tr>
<tr>
<td>H2d</td>
<td>GRC -> EA</td>
<td>0.167</td>
<td>0.051</td>
<td>3.262</td>
<td>***</td>
<td>supported</td>
</tr>
<tr>
<td>H3</td>
<td>EA -> EFB</td>
<td>0.167</td>
<td>0.051</td>
<td>3.275</td>
<td>***</td>
<td>supported</td>
</tr>
</tbody>
</table>

Source: author

Note: β= Beta coefficient; SE= Standard error; T= t- Statistics; P= p value; *** Relationships are significant at P<0.05

Table 6 data indicate that GRS had a marginally significant but positive impact on EFB (β = 0.107, t = 2.139, SE = 0.050, and P<0.05). This gave H1a unconditional support. H1b was verified as well because GTD had a large and significant influence on EFB (β = 0.264, t = 5.7, SE = 0.046, and P<0.01). GPM and EFB showed a strong and significant connection (β = 0.201, t = 3.718, SE = 0.054, and P<0.05). This was also in support of H1c. H1d confirmed that GRC and EFB had a significant and positive connection (β = 0.214, t = 3.472, SE = 0.062, and P<0.01). Furthermore, the effect of GRS on EA was significantly and favorably supported by H2a (β = 0.194, t = 3.881, SE = 0.050, and P<0.01). The H2b hypothesis was validated by a positive and statistically significant link between GTD and EA (β = 0.192, t = 3.961, SE = 0.049, and P<0.01). Based on the results (β= 0.343, t= 6.867, SE= 0.050, P<0.01), GPM strongly and significantly impacted EA, supporting the H2c hypothesis. H2d was further verified as a substantial influence of GRC on EA (β = 0.167, t = 3.262, SE = 0.051, and P<0.01). Lastly, H3 confirmed that EA and EFB had a strong and positive connection (β = 0.167, t = 3.275, SE = 0.051, and P<0.01).

The role of EA as a mediator in the link between GRS, GTD, GPM, GRC, and EFB was evaluated. The result (see Table 7) revealed a significant indirect effect of GRS on EFB through EA (β = 0.032, t = 2.287, SE = 0.014, and P<0.01). The total effects of GRS on EFB were significant (β = 0.139, t=2.761, SE= 0.050, and P<0.05), with the inclusion of the mediator the effect of GRS on EFB was still significant (β= 0.107, t=2.139, P<0.05). This demonstrates that EA has a Complementary Partial Mediating role in the interaction...
between GRS and EFB. H4a was therefore approved. H4b was also supported as the result revealed a significant indirect effect of GTD on EFB through EA (β = 0.032, t= 2.519, SE= 0.013, and P<0.05). The total effects of GTD on EFB was significant (β = 0.296, t= 6.500, SE= 0.046, and P<0.01), with the inclusion of the mediator the effect of GTD on EFB was still significant (β = 0.264, t= 5.700, SE= 0.046, and P<0.01). This shows a Complementary Partial Mediating role of EA in the relationship between GTD and EFB. Hence, H4b was also proved. Moreover, the result revealed a significant indirect effect of GPM on EFB through EA (β = 0.057, t = 3.148, SE = 0.018, and P<0.05). The total effects of GPM on EFB were significant (β = 0.258, t= 4.967, SE= 0.052, and P<0.01), with the inclusion of the mediator the effect of GPM on EFB was still significant (β= 0.201, t= 3.718, SE= 0.054 P<0.01). This confirms H4c and demonstrates that EA has a Complementary Partial Mediating role in the interaction between GPM and EFB. Lastly, the result indicated a significant indirect effect of GRC on EFB through EA (β = 0.028, t = 2.265, SE = 0.012, and P<0.05). The total effects of GRC on EFB were significant (β = 0.241, t=3.996, SE= 0.060, and P<0.01), with the inclusion of the mediator the effect of GRC on EFB was still significant (β= 0.214, t= 3.472, SE=0.062 P<0.01). This demonstrates that EA has a Complementary Partial Mediating role in the interaction between GRC and EFB. H4d was therefore approved.

Table 7: Mediation relationships

<table>
<thead>
<tr>
<th>HYP</th>
<th>Relationship</th>
<th>β</th>
<th>SE</th>
<th>T</th>
<th>P</th>
<th>Result</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4a</td>
<td>GRS -> EA -> EFB</td>
<td>0.032</td>
<td>0.014</td>
<td>2.287***</td>
<td>Partial supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4b</td>
<td>GTD -> EA -> EFB</td>
<td>0.032</td>
<td>0.013</td>
<td>2.519***</td>
<td>Partial supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4C</td>
<td>GPM -> EA -> EFB</td>
<td>0.057</td>
<td>0.018</td>
<td>3.148***</td>
<td>Partial supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4d</td>
<td>GRC -> EA -> EFB</td>
<td>0.028</td>
<td>0.012</td>
<td>2.265***</td>
<td>Partial supported</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: author

Note: HYP= Hypothesis; *** Relationships are significant at P<0.05

We found that the model's predictive relevance was predictively significant in terms of predictive power, as shown in Table 8 of our analysis results. PLS-SEM_RMSE values (0.849, 0.889, 0.767, 0.878, 0.867, 0.862, and 0.875) in our analysis are all lower than LM_RMSE values (0.871, 0.911, 0.780, 0.889, 0.879, 0.886, and 0.910). demonstrates the model's high predictive power (Shmueli et al., 2019). Additionally, the endogenous latent variables' Q² predictors (EFB = 0.696 and EA = 0.644) were larger than 0.35. As a result, according to Hair et al. (2013), the model has good predictive efficacy.

Table 8: Explanatory predictive power

<table>
<thead>
<tr>
<th>LV Prediction summary</th>
<th>MV Prediction Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV</td>
<td>Q²predict</td>
</tr>
<tr>
<td>EA</td>
<td>0.644</td>
</tr>
<tr>
<td>EFB</td>
<td>0.696</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: author
Discussions and Findings

This study provided insight into green HRM, a relatively new area of research in the HRM field. Research on GHRM practices in public higher education institutions, especially in Afghanistan, is lacking despite the abundance of literature on GHRM implementation in the corporate sector. This study assessed the impact of green HRM practices on academicians' and non-academicians' eco-friendly behaviors in Afghanistan's public higher education institutions. These practices included green recruitment and selection, green training and development, green performance management, and green reward and compensation.

The study findings showed a positive relationship between GRS and EFB, GTD and EFB, GPM and EFB, and GRC and EFB in PHEIs of Afghanistan, which confirmed the H1a, H1b, H1c, and H1d hypothesis. Furthermore, the environmental awareness of employees is demonstrated by their attitudes and contributions through EA. The findings thus support our hypothesis and show that GHRM practices influence EA (H2a, H2b, H2c, and H2d). Additionally, the study supported H3 by showing that EA had a positive effect on EFBs at work who use environmental conservation and protection practices. Finally, the study result indicated a significant indirect association between GHRM and employees' EFB, mediated by EA, which is shown by the support for H4a, H4b, H4c, and H4d. Our finding supports the earlier research that found GHRM to be directly and significantly related to EFBs in the workplace (Dumont et al., 2017; Chaudhary, 2019; Saeed et al., 2019). GHRM employees are essential in assisting businesses in proactively implementing environmental sustainability, and they increase the organization's EP through their EFB (Ahmed et al., 2021). The study result indicated that companies that practice environmental consciousness encourage their staff to adopt eco-friendly habits.

By giving workers the chance to take part in environmental sustainability projects and by fostering a pleasant work atmosphere that supports environmentally friendly behavior, GHRM practices have a beneficial impact on employees' EFB (Saeed et al. 2021).

The results of this study are consistent with other research that has demonstrated how an organization's GHRM practices affect employees' eco-friendly behavior (Chaudhary, 2019; Dumont et al., 2017). According to Bissing-Olson et al. (2013), the results show that workers carry out the official organization-mandated green tasks. Workers engage with EFB more effectively when they have a positive understanding of GHRM practices (Tian et al., 2020). The study's findings about GRS on EFB are consistent with those of Yong et al. (2019), who highlighted how GRS practice shows a company's preference for applicants who share their commitment to the environment. Therefore, choosing workers who share this interest increases the possibility that environmental risks to the company and the public will be decreased. By using GTD, GHRM creates a culture that is conducive to environmental goals and educates workers about the values and facets of EM that are necessary to accomplish these goals (Chaudhary, 2019). The findings align with the research conducted by Almajdawi and colleagues in 2017 which found that implementing training and development programs well as adopting eco-conscious recruitment practices, positively influenced individuals' environmentally friendly behavior. Likewise, employees who receive training to participate in initiatives are more likely to actively contribute to their organization's ecological endeavors, beyond their assigned duties. The findings of the study align, with the research conducted by Pinzone et al. (2016) which suggests that incorporating considerations into performance management encourages employees to engage in eco-friendly activities (Saeed et al., 2019). The results also indicate that providing incentives motivates employees to embrace initiatives. This implies that organizations should support their employees by offering guidelines for actions and recognizing their positive
behaviors thereby encouraging employee participation, in both official and voluntary eco-friendly practices. When workers are acknowledged and rewarded for their contributions, they are more likely to reciprocate by engaging in conscious behavior (Raineri and Pailié 2016). In addition, Green HRM works to advance environmentally friendly employee behaviors and an awareness culture in public institutions. Water conservation, cutting carbon footprints, reusing natural resources, going paperless, cutting back on plastic use, and trash reduction are just a few of the steps that have been taken to accomplish this goal (Scherbaum et al., 2008).

Additionally, employee attitudes and contributions through EA show their concern for the environment. Subsequently, the results validate our hypothesis and demonstrate that GHRM practices have an impact on EA (H2a, H2b, H2c, H2d). EA can be interpreted as an indication of an employee's aptitude, assisting them in meeting the GHRM-expected EFB targets (Edwards, 1996). This demonstrates how effective GHRM procedures impact employees' EA development. While GTD trains and enhances employees' EA, additional practices like GRS, GPM, and GRC all function as a complete set to guarantee employees' motivation and preparedness to acquire and develop EA that supports the achievement of strategic organizational goals and objectives. Studies showing that efficient GHRM processes guarantee and enhance employees' EA lend credence to this hypothesis (Tariq et al., 2014). Saeed et al., (2019) have found that even in organizations with green HRM policies, employees continue to prevent issues about which they do not know enough. This finding confirms the previous one. Another argument for EA as a result of GHRM is that it can result in EFBs at work that apply environmental conservation and protection techniques, supporting H3. The support for H4a, H4b, H4c, and H4d demonstrates the important indirect relationship mediated by EA between GHRM and employees' EFB. These results, which acknowledge the findings reported by Kim et al. (2019) and Roscoe et al. (2019), imply that workers take responsibility for environmental issues and activities if they have a greater awareness of the environment and believe they can significantly contribute to its protection. The present study's results validated the noteworthy indirect relationship between GHRM and EFB, whereby EA played a complete mediating role. Regarding the possibility that HRM may affect employee workplace outcomes through underlying mechanisms like EA, this study adds to the body of prior research (Jiang et al., 2012). These results imply that employees are more likely to be environmentally conscious in the workplace and, more crucially, will actively participate in the company's green initiatives if they are aware of the advantages of adopting green practices and their drawbacks. This demonstrates how important it is for EAs to be formed to guarantee that GHRM procedures are followed to the letter, which results in EFB at work. Research indicates that a higher EA level enhances the correlation between the GHRM and EFB (Saeed et al., 2019). To the best of our knowledge, no other study has been carried out in the Afghan setting that uses EA as a mediator between GHRM and EFB among academics and non-academic workers.

Conclusion

GHRM plays a crucial role in ensuring that organizations, particularly PHEIs, prioritize going green. This is especially important in an expanding economy like Afghanistan. PHEIs serve as an economy's and society's knowledge accelerators. Academicians at PHEIs have a strong social impact that contributes to the attainment of environmental sustainability, which is essential to averting approaching environmental catastrophe. Compared to other ability, motivation, and opportunity (AMO)-based research conducted in manufacturing organizations (Alnajdawi et al., 2017) and healthcare centers (Pinzone et al., 2016), this study employed the AMO theoretical framework in a university setting. This study expands on GHRM research by examining the function of Green HRM in Afghanistan's public higher education system, as it was previously only explored in the context of organizations. It adds to the body of knowledge on campus greening from a behavioral standpoint by clarifying the function of GHRM practices in facilitating the eco-friendly behavior of university employees and instructors. For businesses looking to incorporate environmental sustainability into their operations, Green HRM has become a crucial tactic. It focuses on how an organization's operations affect the environment and seeks to reduce any unfavorable effects while promoting sustainability.

We used GHRM practices like green recruitment and selection, green training and development, green performance management, and green reward and compensation in our analysis. This study highlights the critical role that GHRM plays in organizations, taking into account global environmental conditions. Green practices lead to green companies, hence the effect of GHRM on employees' eco-friendly behavior is investigated with the aid of underlying mechanisms. Furthermore, we discovered that GHRM practices would strengthen organizations' environmental productivity initiatives and have a favorable impact on employees' eco-friendly behaviors. Our findings support the claim made by Pham et al. (2019) that environmental productivity practices and programs help create resource-efficient, socially conscious, and environmentally sensitive organizations. They also encourage employees to embrace a green orientation within the company (Pham et al., 2020). As GRS accesses the environmental concerns of the people chosen within the organization, GHRM improves the EFB of employees. Further assisting in the development of abilities to meet the organization's environmental goals includes GTD. Employees are further encouraged to construct EFBs by GPM, which assesses whether or not the environmental goals are met. GRC encourages workers to put forth more effort toward accomplishing the company's environmental goals. These elements of green HRM contributed to raising employees' EFB. AMO theory provided additional support for the concept by elucidating how GHRM might lead to greener organizations and employee EFBs. This study contributes to narrowing the research-practice gap in the field. These findings offer a foundation for further research into GHRM and its function in EFB.

Furthermore, the findings corroborated the theories that GHRM significantly improves employees' EFB and that environmental awareness plays a major mediating role in this relationship. There was a strong mediation effect of EA on the relationship between
GHRM and EFB. Even if EA affects how employees behave, we think this result opened up new avenues for investigating other variables that could have a big impact on how they behave. Furthermore, an eco-friendly work environment encourages workers to adopt environmentally responsible practices. According to the AMO theory, every component of AMO enhances EFB. For instance, employees' GRS permits them to exploit their green skills through EA. Workers solve environmental issues creatively by utilizing these skills. Additionally, GTD improves the skills and talents that lead to an improvement in their EA abilities, and they can generate more creative solutions for environmental issues. GPM and GRC for staff members encourage staff members to participate in green initiatives for companies. Possibilities within the company include methods or procedures that eventually lead to the EFB, such as creatively recycling products (Rayner & Morgan, 2018). These opportunities enable employees to make decisions that are relevant to the organization's environmental goals. Our study attempted to clarify the reasons behind the impacts of GHRM practices on the EA and EFB. We can conclude from the replies we have gathered from employees working in the PHEIs in Afghanistan that GHRM techniques, such as GRC, GPM, GDS, and GRS, assist workers in becoming environmentally conscious and acting in an eco-friendly manner. This study is among the first on GHRM, its mechanics, and more importantly, its environmentally friendly results to be carried out in Afghanistan. The study's conclusions aid in the advancement of society. It brings socially conscious and ethical faculty and staff at universities to the public's notice. It illustrates how important it is for GHRM strategies like GRS, GTD, GPM, and GRC to encourage energy-saving, water-saving, and waste-reduction habits in a community. In conclusion, this research argues that university faculty members' eco-friendly actions are important in preserving the environment.

Based on our findings, we propose that HR practitioners should concentrate more on the effective integration of green practices into routine HR functions. Furthermore, since people in developing countries are more concerned with efficiency and profit than with environmental harm, organizations should prioritize rewarding and fostering eco-friendly behavior to help employees become accustomed to EFBs and inspire them to recycle, reuse, and reduce waste in their personal lives for the benefit of the environment. The limitations of this study may open up new research directions. First, six Afghan public universities hosted the research for this study. Due to the differences in funding and organizational structure amongst private higher education institutions, the study's conclusions cannot be applied to them. Furthermore, the findings are noteworthy and innovative. Thus, to assist in generalizing the results as much as feasible, additional research on these variables in the same context is required. Second, the current study can be expanded by incorporating additional organizational and personal factors to clarify the mediating process. For example, future research can examine green mindset, green empowerment, green lifestyle, health and safety compliances, green leadership, green creativity, and green empowerment. Finally, as this study only included a quantitative study and employed a cross-sectional survey to get data, it is highly advised to do qualitative research or use a mixed-methods technique that delays data gathering.

Acknowledgment (MUST)
All authors have read and agreed to the published version of the manuscript.

Author Contributions: Conceptualization, B.T., M.A.; methodology, B.T., M.A. validation.; formal analysis, B.T., M.A.; investigation, B.T.; resources, M.A.; writing—original draft preparation, M.A.; writing—review and editing, B.T., M.A.

Funding: This research has not been funded

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References

Publisher’s Note: SSBFNET stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.