Exploring the impact of green human resource management on pro-environmental behaviors: a study in Afghanistan's industrial sector

Mohammad Yunes Amini (a), Zhen Tang (b)*, Zakirullah Zaki (c)

(a) Ph.D. scholar, School of Business, Hohai University, Jiangning Campus, 8 Fochengxi Road, Jiangning District, Nanjing, Jiangsu Province, China
(b) Professor, School of Business, Hohai University, Jiangning Campus, 8 Fochengxi Road, Jiangning District, Nanjing, Jiangsu Province, China
(c) Ph.D. scholar, School of Business, Hohai University, Jiangning Campus, 8 Fochengxi Road, Jiangning District, Nanjing, Jiangsu Province, China

ARTICLE INFO

Article history:
Received 12 December 2023
Received in rev. form 29 Jan 2024
Accepted 04 February 2024

Keywords:
Green human resource management
GHRM, green psychological climate
GPC, worker engagement WENG,
and Pro-environmental behaviors PEBs

JEL Classification:
M12, J24, M54, Q56

ABSTRACT

Green human resource management, or GHRM, is a relatively new idea but is already thought to be an essential tool for fostering sustainable behavior in businesses. We intended to find out how GHRM affects worker pro-environmental behaviors (PEBs) by using worker engagement (WENG) and the green psychological climate (GPC) as mediators. The study tested and analyzed the suggested model using the PLS-SEM technique via SmartPLS 4. To gather data from 324 valid respondents—HR managers and employees—we used a quantitative study approach. These participants were chosen randomly from three industrial parks in Afghanistan. The analysis’s findings demonstrated that GHRM possessed a positive impact on employees’ PEBs. Furthermore, the employees’ pro-environmental behaviors PEBs are fostered by the green psychological climate GPC and worker engagement WENG. The present research is significant because it fills in the gaps in the literature and offers new perspectives on GHRM. Notably, there aren’t many GHRM studies that focus on Afghanistan’s industrial sector. Furthermore, in analyzing these connections and evaluating the mediation effects, this study contributes to the body of knowledge currently available on PEBs. Additionally, this study makes a practical contribution to the industrial sector by offering guidance on how to improve managers’ understanding of GHRM policies, enhance employee PEBs at work, and foster an environmentally friendly organizational culture.

* Corresponding author. ORCID ID: 0000-0001-9320-6275
© 2024 by the authors. Licensee SSBFNET, Istanbul, Turkey. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Like in other nations, Afghanistan had adopted the idea of preserving the environment to achieve sustainable development from the outset of the country’s first socioeconomic and cultural development program but unfortunately, Environmental degradation is a real issue. The rate of environmental deterioration, however, surpasses the expected improvement resulting from development and regulatory activities. Several environmental indexes, standards, and green initiatives show sporadic and inadequate improvement. As a result, the following queries might be raised: What is the reason behind this gap and deficiency? Despite the National Environmental Protection Agency (NEPA) of Afghanistan having a supervisory role, why have industrial organizations in the country failed to improve environmental conditions?

Companies’ access to capital and capacity to handle environmental challenges are both hampered by challenging economic conditions (Vikhanskiy et al., 2012; Crotty and Crane, 2004). A deeper comprehension of the principles underlying the development of strong PEBs efforts in Afghanistan’s industrial firms is essential, given the country’s potentially significant environmental impact and complex economic climate.
GHRM encompasses various strategies such as attracting employees with green values and goals that align with the organization's objectives, offering training programs to enhance environmental knowledge, capabilities, awareness, and mentality among staff, and rewarding eco-friendly behavior with compensation (Zhu et al., 2021; Cheema et al., 2020).

GHRM is the buzz of the environmental management era. According to Renwick et al. (2013), GHRM represents the HRM components of environmental management. According to Kramar (2014), “HRM undertakings resulting in the improvement of the natural environment”. Furthermore, Opatha and Arulrajah (2014), revealed that GHRM includes every task intended to develop, implement, and continually maintain a system that will turn the company into a green enterprise.

In certain corporate settings, environmental management and human resources are connected (Renwick et al., 2013). This relationship is referred to as environmental HRM, or GHRM (Renwick et al., 2013). The GHRM practices can be effectively implemented as demonstrated by the four-step model (Milliman and Claire, 1996): (1) Provide the HR department with an environmental vision; (2) Promote the exchange of environmental objectives and goals among staff members; (3) Develop procedures for assessing employee environmental performance; and (4) Provide incentives and rewards to workers who exhibit exceptional environmental performance.

The Green Psychological Climate (GPC) is developed by GHRM practices and is associated with the individual's behavior, perceptions of the work environment, and personal ethics concerning environmental dependability. According to Dumont et al. (2017), GPC generally refers to organizational policies, processes, and practices that are environmentally oriented and that individuals experience in their workplaces. Additionally, GPC is the consequence of employee social actions, which teach them the importance of participation and the organization's best practices, rules, and standard operating procedures (Kuenzi and Schminke, 2009).

An important issue is the complexity of an individual's environmentally friendly behaviors. Work engagement (WENG) can be correlated with institutional characteristics like GHRM, but the relationships are complicated and multidisciplinary, with potential influences of other psychological and social elements (Paille, Boiral, and Chen 2013). WENG is an interactive interaction that is exemplified by the interaction of an individual's personality qualities with the organizational structures and conditions that surround them, including HRM methods and activities (Robinson, Perryman, and Hayday, 2004).

Employees' pro-environmental behavior (PEBs) or green behavior, originates from the employees' eco-aware behaviors and interest in energy conservation, waste reduction, material recycling, and other comparable actions that mitigate environmental risks (Williams et al., 2008; De Leeuw et al., 2015). Moreover, it has been defined as a sequence of environmentally-beneficial actions that contribute to the institution's goal of saving the environment (Wang et al., 2016b).

It is recommended to concentrate on Afghan employees since distinctive features of the country's culture could influence individuals' PEBs or the methods that form them. Compared to people in other nations, Afghans demonstrate to have less personal interactions with PEBs. And are less inclined to believe that businesses should be in charge of environmental sustainability. No handful of research has determined what motivates firm-level sustainability initiatives in Afghanistan, such as GHRM, employees' PEBs, GPC, and the WENG. By examining the effects of GHRM on workers (PEBs) and the mediating roles of GPC and WENG, the current study seeks to fill a vacuum in the literature. This study acknowledges the human side of PEBs and complements studies on firm-level initiatives. As a result, this study will provide several contributions to our knowledge of GHRM's function in a business's green sustainability. First, it expands on the model, suggesting that GHRM implementation can lead to employees' PEBs in Afghan industrial enterprises within an organizational structure.

Secondly, our research validates that GHRM has indirect effects on PEBs through WENG and GPC in addition to direct effects. This implies that GPC implicitly contributes to PEBs and benefits the organizational behavior approach (Greening and Turban, 2000).

Third, an empirical analysis of the research on how GHRM affects GPC, WENG, and PEBs at work is still pending. Therefore, to comprehend the idea of GHRM and its impacts more effectively, this research boosts the body of knowledge currently available about GHRM-related behaviors. Regarding its impact on employees' professional workplaces. (Renwick et al., 2013) thinks that the GHRM is still in its early stages of development. Additionally, the concept of GHRM has not yet taken hold in Afghanistan, and further study is needed to put it into practice, address the current environmental catastrophe, and offer useful applications to industrial firms worldwide.

Afghanistan's industrial regions are home to a diverse range of businesses that deal with rubber, plastics, non-alcoholic beverages, furniture, food industry equipment, textiles, clothing, hardware, profiles, and other products. As a result, these businesses cause a range of irreversible environmental damages that necessitate constant PEBs and GHRM measures. In this study, we propose and test an exploration model that examines the interactions amongst GHRM, GPC, WENG, and PEBs. Consequently, our study discourses four key Questions concerning research: first, what kind of connection exists Between GHRM and employee PEBs? Second, how much overlap exists amongst GHRM and GPC? Third, how does GHRM link with WENG? Fourth, Do GPC and WENG act as intermediaries in the correlation between GHRM and PEBs?

Our study aims to improve knowledge of the GHRM procedures that enable PEBs in Afghanistan. We concentrate on GHRM, GPC, and WENG as three potentially significant antecedents of PEBs in Afghanistan, drawing on the body of research on the significance of human elements in reflecting PEBs (e.g., Paille and Boiral, 2013; Wesselinck et al., 2017). We hope our research will contribute to the creation of useful guidelines and procedures for the promotion of PEBs in Afghanistan.
We outline the research model in the remaining sections of our study. Next, we formulate ideas based on the Ability, Motivation, Opportunity (AMO), social exchange (SET), job demands-resources (JD-R) theory, and little evidence obtained from the literature that has already been published. The methodology and conclusions of the empirical study conducted in Afghanistan will be presented after. Finally, we close this paper with the argumentation of the major contributions, managerial implications, conclusion, and directions for further research.

Literature review

Theoretical Background

Researchers have illustrated employees' PEBs using several theoretical frameworks (Paillé and Mejia-Morelos, 2014). Some theories, including the AMO, SET, and (JD-R) theory were used in this study to figure out the environmental consequences of certain green organizational techniques i.e., GHRM, PEBs, GPC, and WENG. This study's goal is to provide an explanation for the employees' PEBs based on elements of green organizational initiatives like WENG, GPC, and GHRM. Based on the AMO theory of Appelbaum et al. (2000), a deeper understanding of the model presented in this paper can be achieved. An accepted theory about how green workplace policies and practices affect employees' PEBs. (For example, Renwick et al., 2013; Pham, Tučková, and Jabbour 2019; and Jabbour et al., 2015). This theory can be utilized to examine the relationship, between GHRM and individual PEBs as proposed by (Renwick, Redman and Maguire 2013; and Appelbaum et al. 2000). According to this concept High Performance Work Practices (HPWS) refer to a set of interconnected HR procedures that are categorized into three groups based on opportunity motivation ability (Appelbaum et al. 2000). The capabilities of employees are influenced by procedures such as recruitment, selection, development and training programs. These procedures ensure that employees possess the knowledge and skills required for job roles. On the other hand, motivation is based on performance evaluation procedures and both monetary and non-monetary rewards that enhance employees' efforts, towards achieving performance goals. Lastly, opportunity encompasses behaviors that encourage employee engagement in activities aimed at enhancing performance. These behaviors include sharing knowledge, involvement, and autonomy-enhancing behaviors (Marín-García and Tomás, 2016). As a result, the AMO theory takes into account all organizational procedures and guidelines that improve workers' skills, drive them to complete particular tasks and encourage them to take advantage of all opportunities that encourage environmentally friendly behavior and, in turn, improve the performance of the entire organization.

Employees show high WENG at work when they discover that there are a variety of job resources available. The JD-R theory (Bakker and Demerouti, 2017), states that the accessibility of job resources is an indication of the company’s support. WENG is a motivational variable that stimulates employees' PEBs, according to JD-R theory. This is because individuals who are enthusiastic and feel good about their work are regarded as work-engaged (Bakker and Demerouti, 2017). These workers contribute to the company through their PEBs and display beneficial behavioral outcomes (Raza et al., 2021). By using this strategy, working environments, such as job demands and resources, can foster engagement (Moura & Orgambídez-Ramos, 2014). An illustration of a job demand would be imposing additional environmental obligations or expectations on individuals. And providing support, training, freedom, and acknowledgment for pro-environmental actions is an example of a job resource. According to Bakker and Demerouti (2017), the JD-R theory offers a framework for understanding how GHRM practices can serve as tools to reduce job pressures associated with environmental obligations while also encouraging good WENG and behaviors that lead to environmental sustainability. The impact of GHRM on WENG can be substantial, according to studies that have relied on the JD-R model in the setting of WENG (Moura and Orgambídez-Ramos, 2014; Chen and Peng, 2019).

According to social exchange theory (Cropanzano and Mitchell, 2005), there are a variety of social exchanges that take place in the workplace among the employer and workers (Cropanzano and Mitchell, 2005). For example, GPC from social exchanges increases worker engagement and decreases quit intention. Positive reciprocal exchanges result in employees staying with the organization (Saks, 2006). The development of a positive GPC and WENG is influenced by the favorable opinion of GHRM practices. When workers see that the company is making an effort to be environmentally sustainable, they feel obligated to respond favorably. According to SET, the advantageous GPC and WENG created by GHRM promote a sense of duty or reciprocity in employees. Employee participation in PEBs is encouraged and influenced by this sense of duty as a way to repay the company for investing in sustainable practices.

Empirical Review and Hypothesis Development

GHRM and PEBs

GHRM describes HRM procedures that are integrated into the organization's environmental strategy and PEBs of employees and have an ecological and environmental impact on the organization (Renwick et al., 2013). According to (Mishra et al., 2014). GHRM with a pro-environmentalist approach of the HR department has a great inspiration for preserving an eco-friendly approach and practices in the work environment (Paillé e and Mejía-Morelos, 2014; Dumont et al., 2017; Yushliza et al., 2017).

Green behavior, also known as employees PEBs, is described as "worker's activities to fulfill job-related duties in an environmentally responsible manner (for example, by using resources wisely, waste disposal, adopting extra green policies, engaging in environmental inventions) De Roeck and Farooq (2017). Practices like recycling, waste control, and reduction, energy consumption reduction, and
any other behavior that intentionally aims to minimize the adverse effects on the environment are examples of an employee's PEBs at work (Lu et al., 2017). Employees who engage in behavior that benefits the environment are known as PEBs (Unsworth et al., 2013). Which attempts to reduce the harm created by organizational procedures or human behavior.

Multiple studies have primarily examined the relationship between GHRM and employees' PEBs: According to a Chinese study, green HR managers can anticipate their employees' green behaviors by asking them for information (Zhang et al., 2019). Ong and Riyanto (2020) carried out a second study in Indonesia to investigate the connection between environmental performance and the green practices of HR managers. The results indicated that GHRM enhances employees' organizational citizenship behavior OCB, which in turn can increase PEBs in industrial organizations. (Kim et al., 2019) looked at how GHRM may enhance workers' PEBs and hotel environmental performance. The aforementioned reasons were supported by Dumont et al. (2017) in the findings of their investigation of Chinese workers. Their result revealed whereas employees' extra-role green behaviors can be indirectly impacted by employing GHRM via the GPC established within the workplace, employee PEBs are impacted by the GHRM both directly and indirectly. More research is needed to support the underlying processes via which GHRM influences PEBs, even if some researchers have demonstrated the current connection between GHRM and PEBs (Yong et al., 2019; Dumont et al., 2017). Our current research attempts to investigate the nearly unique GHRM impact on employees' PEBs across the broad spectrum of Afghanistan's industrial sector.

GHRM encourages PEBs in workers in several ways. Setting up green training programs, in particular, helps the organization successfully execute its environmentally-friendly operations and produce cleaner products (Pinzone et al., 2019). Through this, employee understanding of environmental commitment and active PEBs are strengthened environmental preservation and green management is increased, and their environmental commitment and active PEBs are strengthened (Pinzone et al., 2019; and Pham et al., 2020). Employee Green selection can also be a focus of the company's GHRM procedures (Yong et al., 2019). Adopting particular hiring requirements can lead to the recognition of applicants who possess a high degree of environmental awareness and familiarity with environmental and green concerns (Nisar et al., 2021). Employees are motivated to achieve green goals when an effectively structured green performance assessment is implemented (Mousa and Othman, 2020). Employees would be encouraged to assist the company in achieving its environmental goals if their eco-initiatives were acknowledged and rewarded (Kim et al., 2019). The development of PEBs is based on the previously mentioned GHRM practices (Aboramadan and Karatepe, 2021). PEBs, in summary, are based on GHRM procedures. Thus, we propose that:

H1. GHRM relates positively to PEBs.

GHRM and GPC

Organizations attempt to improve and introduce environmental and social sustainability. According to Yusliza et al. (2017), HR managers have the power to affect the implementation and execution of environmental guidelines and practices. When it comes to pollution prevention and environmental protection, it is becoming more and more crucial for the industrial sector (Pinzone et al., 2016). In line with the existing situation, environmental aims and organizational aims are connected. Sustainability over the long run of striking economic and social harmony in line with long-term firms' objectives is the foundation of GHRM practices (Dumont et al., 2017). Natural concerns about adhering to important norms and principles through HRM are prioritized in GHRM techniques.

Employees shape a mutual comprehension of the company's procedures along with guidelines by their social exchanges at work. (Zhou et al., 2018). According to Lu et al. (2020), employees' PEBs are significantly impacted by the morals and values of their employers. Thus, an organization needs to create GPC if it hopes for success with its environmental policies. The phrase (GPC) suggests that organizations seek to accomplish long-term goals and priorities through putting into practice diverse green legislations (Chou, 2014). The most recent research indicates that the GPC has a significant interpersonal impact on employees' PEBs (Dumont et al., 2017).

According to (Yusoff et al., 2020), the operation of GHRM approaches encourages environmentally conscious behaviors and raises employee understanding of sustainable practices, which in turn fosters a green psychological environment and climate within the firm. Therefore, the company needs to encourage green duties in the workplace by giving workers appropriate job designs, offering PEBs appropriate rewards in the workplace, and raising employee understanding of green values. The broad implementation of GHRM techniques has demonstrated the multifaceted nature of this framework (Tang et al., 2018). In the same vein, information-seeking behavior is encouraged at work, and environmentally responsible actions can effectively produce a GPC (Nisar et al., 2021).

As a result, the hypothesis that follows is put forth:

H2. GHRM has a significant and positive impact on GPC.

GPC and PEBs

Employees' PEBs are "those sustainable behaviors and actions that are connected to the sustainability of the environment, either promote it or hamper it." (Ones and Dilchert 2012).

Individual PEBs will be activated, resulting in a GPC, when they gain a general impression of the implementation of environmental practices and policies by their organization that promote the preservation of the environment and green beliefs (Zhou et al., 2018;
Dumont et al., 2017; Ramus and Steger, 2000). The formation of mutual perceptions among employees regarding regulations, working procedures, and routines is mostly attributed to social cognitive processes, as noted by (Nishii et al., 2008).

According to Chou (2014); and Ramus and Steger (2000), GPC is a collection of environmental regulations that organizations adopt to help them accomplish their goals for a sustainable environment. In general, the organizational climate has drawn a lot of attention as a crucial contextual element influencing the attitudes and behaviors of employees (Norton et al., 2017). It is less evident how common green attention emerges, although some recent research suggests that green climates are linked to environmental conduct (Zientara and Zamojska, 2018).

Norton et al. (2017) presented the idea of GPC perspectives and views of their companies’ sustainability practices, procedures, and policies based on the organizational climate. Employees who witness a higher degree of positive green climate internalize values that support the environment and are more strongly supported by the organization to participate in PEBs. Put another way, a positive GPC incentivizes workers to follow environmental sustainability guidelines and suggestions more strongly, leading to higher PEB levels. Given that both GPC and PEBs are personal structures, one may argue that GPC is the most likely predictor of PEBs.

The literature that has already been published provides some empirical evidence that the climate has an impact on employees’ PEBs. This demonstrates that, as a variable, GPC predicts PEBs (Kuenzi et al., 2020; Pham et al., 2020; Dumont et al., 2017). To sum up, we come up with this argument:

H3. GPC has a significant and positive impact on PEBs.

GHRM and WENG

The degree to which individuals are physically, mentally, and psychologically immersed in their work is termed as worker engagement. Moreover, WENG is described as a favorable, satisfying, job-related state of mind that can be described by vigor, commitment, and involvement (Schaufeli and Bakker, 2004). Adding to this, WENG can be described as the vigor with which a worker approaches tasks linked to green labor, as well as the degree of absorption that occurs in green work and the enthusiasm to work at an eco-friendly level.

A foundation for understanding the association among GHRM and WENG is provided by the (JD-R) theory. A motivating mechanism that links organizational and work resources to WENG may be triggered by HRM practices (Demerouti et al., 2001). From this angle, employee WENG is positively correlated with GHRM at work, which can be seen as a motivating element (Schaufeli and Bakker, 2004). Employees can be motivated in both intrinsic and extrinsic ways by resources like GHRM, which support their professional growth and help them achieve their goals. As such, they are thought to encourage workers’ commitment to their jobs, especially WENG Bakker and Demerouti, (2008). In light of this debate, we propose:

H4. GHRM positively and significantly correlated with WENG.

WENG and PEBs

According to Bakker and Demerouti (2017), motivation has a positive influence on job performance, as stated in the sixth postulate of the JD-R theory. Goal-oriented workers, have a positive attitude toward their work, pay close attention to it, and are enthusiastic to accomplish job-related responsibilities efficiently. Numerous studies from the general literature (Orlowski et al., 2021; Rich et al., 2010) attest to this connection. Nevertheless, the relationship between WENG and employees’ PEBs has not yet been thoroughly examined in empirical research. For example, WENG activated task-related and proactive PEBs in Chinese employees, according to Karatepe et al. (2020). The study by Raza et al. (2021) proved that WENG encouraged employees in Pakistan to participate voluntarily in PEBs.

Given the JD-R theory and the previously described results, we argue that workers with high WENG have goal orientation and concentrate on their learning and development. Apart from demonstrating superior performance concerning to work, employees might also benefit the organization with their PEBs. Higher WENG was similarly linked to decrease intent to quit amongst Chinese hotel workers, (Wang et al., 2020). Therefore, we propose that:

H5. WENG positively correlates with employees’ PEBs.

Mediating role of GPC and WENG

HRM may not have a direct impact on employees’ behavior; instead, its effect is conveyed via a variety of supporting structures, as acknowledged by behavioral HRM research (Jiang et al., 2012).

In current research, we hypothesized the effects of GHRM on PEBs through the social and psychological processes of GPC. According to Chatelaine et al. (2018), the GPC is a common organizational perception regarding environmental well-being.

The literature defines a “green climate” as one that pertains to organizations that adopt a range of environmentally friendly guidelines to achieve sustainable objectives (Ramus and Steger, 2000; Chou, 2014). According to (Norton et al., 2017), a GPC encourages workers to participate voluntarily in socially conscious activity and serves as a promoting factor for PEBs. Numerous research studies...
have demonstrated that employees' manifestation of specific environmental attitudes would be encouraged by a suitable psychological climate (PC) (Zhou et al., 2018; Dumont et al., 2017; Zientara and Zamojska, 2018).

According to recent studies, there is a connection between successful green employee actions, institutional environment policies, and green environment activity (Norton et al., 2017). If the objective is to assist the organization, then management techniques and employee contact create the psychological environment. GHRM procedures often set forth the standards that employees must follow. Additionally, GHRM practices help employees deal with their fear regarding PEBs by helping them create a GPC (Saeed et al., 2019). Environmentally beneficial behavior is promoted by the GPC (Capstick et al., 2019). Given that the current study predicts that GHRM improves PEBs via GPC’s mediating function, the following hypothesis has been put forth:

H6: The correlation between GHRM and PEBs is mediated by GPC.

Consistent with previous research, we contend that when an organization utilizes GHRM practices to advance employees' environmental sustainability knowledge and competencies, it demonstrates its appreciation for the green contributions made by its workforce and its concern for their well-being. (Zhong et al., 2016), supported the link amongst HRM practices, PEBs, and WENG. Bakker and Demerouti, (2017), stated Job resources improve workers' WENG, resulting in generating favorable work-associated effects. Workers who exhibit a high degree of WENG as a consequence of GHRM practices for environmental reasons are greater inclined in participating for PEBs and demonstrate a decreased purpose to quit, according to Cropanzano and Mitchell’s (2005) definition of reciprocity. Bhatti et al. (2021) revealed the link of GHRM and environmental performance in Pakistan's gas industry which was successively mediated by WENG and creative environmental behavior. It is implied in the talks above that WENG mediates GHRM's effect on PEBs in a sequential manner. Therefore, we propose that:

H7. WENG mediates the impact of GHRM on PEBs.

Research and Methodology

Participants, Procedures and Model

The quantitative survey research design was used to evaluate the proposed relationships (Zikmund et al., 2013). The prior literature was reviewed during the questionnaire's design and construction. The information was gathered from Afghan industrial companies given that those businesses employ a large number of individuals. The study's goal was communicated to the participating companies to maximize their response rate to the survey. In addition, a preliminary assessment was carried out with three prospective responders from industrial companies to verify the relevance and comprehension of each statement. As a result, the survey was improved in light of the feedback and criticisms received. Research assistants then distributed the survey to private organizations in cooperation with the HR divisions of industrial companies. Each respondent received precise instructions on their engagement to lessen the possibility of bias (Tabachnick et al., 2007). Complete confidentiality for each participant was ensured by preventing organizational staff from seeing the completed questionnaires in order to comply with ethical requirements.

We used five sections in the questionnaire. The employee's descriptive information was supplied in the first section, and the GHRM variables, GPC, WENG, and employees' PEBs were covered in the remaining sections. The 15–20 minute questionnaire was brief, straightforward, and simple to complete. The data was gathered using the random sampling technique, which reduces selection bias and enables conclusions to be applied to a larger population. Because of the potential impact of their viewpoints and actions on the overall organizational sustainability climate, we focused on managers and staff (Furrer et al., 2010). The respondents were given a six-week window, from September 5, 2023, to October 17, 2023, to complete and submit the questionnaires.

We sent out a voluntary, anonymous survey invitation to 600 individuals working in significant manufacturing companies across three distinct large industrial parks in Afghanistan (Kabul, Herat, and Kandahar); 368 (61.33%) of them replied. 44 responses were removed due to missing data. The connection between GHRM, GPC, WENG, and employees' PEBs are shown in Fig. 1. The concept argues that employees' PEBs are directly stimulated by the availability of GHRM practices. GHRM stimulates GPC and WENG to have an indirect impact on PEBs. According to the model, workers who achieve higher on GPC and WENG show PEBs. All of these connections imply that the effect of GHRM on PEBs is successively mediated via GPC and WENG.
Data Analysis Strategy

SPSS version 25 was used to evaluate descriptive statistics. Correlations and reliability metrics were examined via SmartPLS 4. Convergent, discriminant validity, and present internal consistency reliability scores of the measurement model were assessed through confirmatory factor analysis (CFA) (Fornell and Larcker, 1981; Hair et al., 2018). After that, the data was examined using PLS-SEM to verify the study's hypothesized model since it is frequently utilized in numerous scientific fields, particularly HRM (Hair et al., 2018). The sequential mediation process was carried out using bootstrapping with 10,000 samples at a 95% confidence range. Fit statistics containing “ChiSqr (χ2)/df, Comparative Fit Index (CFI), Root Mean Square Error of Approximation (RMSEA), Goodness Fit Index (GFI), Normalized Fit Index (NFI), moreover, Standardized Root Mean Square Residual (SRMR)” were employed. PLS-SEM was specifically chosen to analyze the study because, as it does not require data normality, it is preferable to prevent estimation bias resulting from unknown data (Sarstedt et al., 2016). Thus, the interrelationships between GHRM, GPC, WENG, and PEBs in Afghanistan's industrial parks were analyzed using SmartPLS version 4.

Measures

The survey scale measures were created in English and professionally translated into Afghanistan's two official languages, Pashto and Dari. Following a check by a native speaker of the language, the translation was certified accurate. We used the back-translation approach of Brislin (1986) when translating the questionnaire.

Variables including GHRM practices, GPC, WENG, and PEBs were included in the study. The questionnaire's scale items were modified from earlier studies, and answers to multiple-choice questions. We employed a 5-point Likert scale, where 1 represented strongly disagree and 5 represented strongly agree. A six-item scale measure was used from the study of (Dumont et al., 2017), to find out how the GHRM was implemented in the workplaces of the employees. Five items from the research of Sabokro et al. (2021) were used to test GPC. The four items in the WENG scale were taken from the research conducted by Ansari and Irfan (2023). Nonetheless, the PEBs of Individuals from the research of (De Roeck and Farooq 2017) were measured using a total of 6 items.

Result

Respondents’ Profile

After excluding the 44 surveys with missing data, a total of 324 questionnaires were used in our survey. Out of 324 participants, the results showed that 65.1% (211) were men and 34.9% (113) were women (see Table 1). Most of the responders were in the age range of 28 to 37. This represented 109 individuals, or 33.6% Of the participants, 13.9% (45) were between the ages of 18 and 27, 27.2% (88) were between the ages of 38 and 47, and the rest, 21% (68) and 4.3% (14) were between the ages of 48 and 57 or above than 45.

In terms of education, the majority of respondents (45.7 % of 148) held graduate degrees, followed by 6.5% (21) with post-graduate degrees. Of the respondents, 9.6% (31) had completed secondary and high school, and 38.3% (124) obtained a two-year diploma.

In response to the organizational tenure findings, the majority of employees—35.2% (114)—had between six and ten years of experience, followed by 21.6% (70) with between eleven and fifteen years, and the remaining 13.6% (44) and 3.7% (12) with sixteen to twenty years and above. 6.5% (21) of employees had less than one year of job experience, and 19.4% (63) of individuals had one to five years of organizational tenure. In summary, the descriptive statistics about the marital status of employees revealed that, out of 324 individuals, 76.9% (249) individuals were married; the remaining 23.1% (75) were either single or divorced.
Table 1: Participants’ profile

<table>
<thead>
<tr>
<th>Indic</th>
<th>Cats</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>211</td>
<td>65.1</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>113</td>
<td>34.9</td>
</tr>
<tr>
<td>Age</td>
<td>18-27</td>
<td>45</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>28-37</td>
<td>109</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>38-47</td>
<td>88</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>48-57</td>
<td>68</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>58 or Above</td>
<td>14</td>
<td>4.3</td>
</tr>
<tr>
<td>Marital status</td>
<td>Single or divorced</td>
<td>75</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>Married</td>
<td>249</td>
<td>76.9</td>
</tr>
<tr>
<td>Education</td>
<td>Secondary and high school</td>
<td>31</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>Two-year diploma</td>
<td>124</td>
<td>38.3</td>
</tr>
<tr>
<td></td>
<td>Graduate degree</td>
<td>148</td>
<td>45.7</td>
</tr>
<tr>
<td></td>
<td>Post-graduate degree</td>
<td>21</td>
<td>6.5</td>
</tr>
<tr>
<td>Organizational tenure</td>
<td>Under 1</td>
<td>21</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>1 to 5</td>
<td>63</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>6 to 10</td>
<td>114</td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td>11 to 15</td>
<td>70</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>16 to 20</td>
<td>44</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>Above 20</td>
<td>12</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Source: author

Note: Indic = Indicator, cats = categories, F = Frequency, P = Percentage

Common method bias

A variance inflation factor (VIF) larger than 3.3 is a sign of pathological collinearity and suggests that a model might have common technique bias contamination (Kock 2015). Accordingly, the model can be regarded as free of CMB if all of the inner model’s VIFs, as determined by a complete collinearity test, are equal to or less than 3.3. The inner model's VIF values were used in the current study to evaluate CMB (see Table 2). In light of this, all of the VIF values of our study (1.000, 1.765, 1.000, 1.599, and 1.514) (3.3) are less than (3.3). As an outcome, our data is free of CMB.

Table 2: VIF inner model

<table>
<thead>
<tr>
<th>Variables</th>
<th>VIF values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHRM -> GPC</td>
<td>1.000</td>
</tr>
<tr>
<td>GHRM -> PEBs</td>
<td>1.765</td>
</tr>
<tr>
<td>GHRM -> WENG</td>
<td>1.000</td>
</tr>
<tr>
<td>GPC -> PEBs</td>
<td>1.599</td>
</tr>
<tr>
<td>WENG -> PEBs</td>
<td>1.514</td>
</tr>
</tbody>
</table>

Source: author

Note: GHRM= Green human resource management; PEBs= Pro-environmental behaviors; GPC= Green psychological climate; and WENG= worker engagement

Measurement model

We conducted CFA for GHRM, PEBs; GPC, and WENG, variables, to comply with the model fit. \(\chi^2 = 179.539; df = 64.000; ChiSqr/df= 2.805; GFI= 0.926; CFI= 0.907; NFI= 0.864; RMSEA= 0.075; \) and SRMR= 0.049 were the fit indices for our model. These outcomes were deemed to be satisfactory. For example, a good model fit is indicated by a relative (\(\chi^2/df \)) value of fewer than (5) (Schumacker and Lomax 2004). A significant model fit is indicated based on SRMR and RMSEA values less than 0.08 (Jiang et al., 2002; Hu and Bentler 1999). The NFI value was higher than the minimum threshold of 0.50 suggested by (Hooper et al., 2008). Furthermore, a good match is demonstrated via (CFI) threshold of greater than 0.90 (Marsh and Hocevar, 1985). All standardized loading values exceeded the minimal acceptable value of 0.50 based on the results of CFA (Hair et al., 2010).

All items in this research resulted in significantly higher factor loading values than the minimally necessary value of 0.50 recommended by (Hair et al., 2010). We measured Cronbach's alpha (CA) and composite reliability (CR) for every variable (refer to Table 3). The results showed that the values of CR and CA were greater than 0.60. For GHRM, GPC, PEBs, and WENG, the corresponding CR values were 0.837, 0.840, 0.866, and 0.835; for CA, the corresponding values were 0.757, 0.619, 0.692, and 0.608. This implied that the variables in this study attained reliability based on the Bagozzi and Yi, (1988) research.
Furthermore, the average variance extracted (AVE) value was determined to verify the constructs' convergent validity. The AVE values crossed the 0.50 threshold (Fornell and Larcker, 1981). GHRM, GPC, and PEBs, with WENG, had AVE values of 0.507, 0.724, 0.764, and 0.717, in that order. Convergent validity was thus verified.

<table>
<thead>
<tr>
<th>Reflective Constructs</th>
<th>Item</th>
<th>Loading</th>
<th>Alpha</th>
<th>Rho-A</th>
<th>CR</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Human Resource Management (GHRM)</td>
<td>GHRM1</td>
<td>0.717</td>
<td>0.757</td>
<td>0.759</td>
<td>0.837</td>
<td>0.507</td>
</tr>
<tr>
<td></td>
<td>GHRM2</td>
<td>0.702</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GHRM3</td>
<td>0.741</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GHRM4</td>
<td>0.681</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GHRM5</td>
<td>0.718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Psychological Climate (GPC)</td>
<td>GPC1</td>
<td>0.859</td>
<td>0.619</td>
<td>0.620</td>
<td>0.840</td>
<td>0.724</td>
</tr>
<tr>
<td></td>
<td>GPC2</td>
<td>0.843</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-environmental Behaviors (PEBs)</td>
<td>PEBs1</td>
<td>0.886</td>
<td>0.692</td>
<td>0.696</td>
<td>0.866</td>
<td>0.764</td>
</tr>
<tr>
<td></td>
<td>PEBs2</td>
<td>0.861</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker Engagement</td>
<td>WENG1</td>
<td>0.873</td>
<td>0.608</td>
<td>0.618</td>
<td>0.835</td>
<td>0.717</td>
</tr>
<tr>
<td></td>
<td>WENG2</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the components in our investigation, the square root of AVE (in bold and italics) was found to have a higher correlation than its connection with other constructs (see Table 4). Thus, our findings offer significant support for the development of discriminant validity (Fornell & Larcker, 1981).

<table>
<thead>
<tr>
<th>Reflective Constructs</th>
<th>Item</th>
<th>Loading</th>
<th>Alpha</th>
<th>Rho-A</th>
<th>CR</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHRM</td>
<td></td>
<td>0.712</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPC</td>
<td></td>
<td>0.582</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEBs</td>
<td></td>
<td>0.557</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WENG</td>
<td></td>
<td>0.549</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to Heseler, Ringle, and Sarstedt (2014), HTMT is predicated on estimating the correlation between the constructs. The HTMT ratio in our investigation is less than the recommended cutoff point of 0.85 (Kline 2011). As a result, the discriminant validity has been proven by Fornell & Larcker and the HTMT criterion (see Tables 4 and 5).

<table>
<thead>
<tr>
<th>Reflective Constructs</th>
<th>Item</th>
<th>Loading</th>
<th>Alpha</th>
<th>Rho-A</th>
<th>CR</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHRM</td>
<td></td>
<td>0.712</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPC</td>
<td></td>
<td>0.582</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEBs</td>
<td></td>
<td>0.764</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WENG</td>
<td></td>
<td>0.802</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the result of our variance inflation factor VIFs analysis, none of the values surpassed 2.00, as indicated by the maximum value of 1.455. Hence, multicollinearity was not a problem in our data (Hair et al., 2010). To optimally assess path coefficients in a reflective PLS-SEM, we employed a consistent PLS bootstrapping approach to examine the proposed hypotheses. Particularly, the bootstrapping created 10,000 resamples at a 95% confidence interval.

GHRM had a positive and significant influence on PEBs, as shown by the results in Table 6 (β = 0.283, t = 3.958, P<0.051). This offered H1 full support. Since GHRM strongly and significantly influenced GPC (β = 0.682, t = 12.465, and P<0.01), H2 was also confirmed. There was a substantial and positive correlation (β = 0.212, t = 3.095, and P<0.05) between GPC and PEB. H3 was also supported by this. H4 verified that there was a substantial and positive correlation (β = 0.549, t = 9.133, P<0.01) between GHRM and WENG. H5 significantly and positively supported the effect of WENG on PEBs (β = 0.275, t = 4.096, and P<0.01).
Table 6: Direct Relationships

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>β</th>
<th>SD</th>
<th>T</th>
<th>P Values</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHRM -> PEBs</td>
<td>0.283</td>
<td>0.071</td>
<td>3.958</td>
<td>***</td>
<td>Supported</td>
</tr>
<tr>
<td>GHRM -> GPC</td>
<td>0.582</td>
<td>0.047</td>
<td>12.465</td>
<td>***</td>
<td>Supported</td>
</tr>
<tr>
<td>GPC -> PEBs</td>
<td>0.212</td>
<td>0.069</td>
<td>3.095</td>
<td>***</td>
<td>Supported</td>
</tr>
<tr>
<td>GHRM -> WENG</td>
<td>0.549</td>
<td>0.060</td>
<td>9.133</td>
<td>***</td>
<td>Supported</td>
</tr>
<tr>
<td>WENG -> PEBs</td>
<td>0.275</td>
<td>0.067</td>
<td>4.096</td>
<td>***</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Source: author

Note: β = Beta coefficient, SD = Standard deviation, T = t-Statistics, *** Relationships are significant at P<0.005.

Table 7. Shows that the effect of GHRM on PEBs was mediated by both GPC and WENG (β = 0.124, SD = 0.041, t = 2.983, P<0.05), with an upper-level confidence interval of ULCI = 0.207 and a lower-level confidence interval of LLCI = 0.043. Zero was not present in any confidence interval. Once the GPC was included, the effects of GHRM on PEBs remained significant (β = 0.283, SD = 0.071, t = 3.958, and P<0.001). The total effects of GHRM on PEBs were substantial (β = 0.557, t = 9.786, SD = 0.057, and P<0.001). They suggested that GPC had a complementary, partially mediating role in the influence of GHRM on PEBs. This supported H6.

Additionally, the results showed that WENG successively mediated the influence of GHRM on PEBs' intentions (β = 0.151, SD = 0.037, t = 4.094, P<0.01, LLCI = 0.077, ULCI = 0.220). Once more, zero did not occur in any of the confidence ranges. When the WENG was included, the effects of GHRM on PEBs remained significant (β = 0.283, SD = 0.071, t = 3.958, and P<0.001). The total effects of GHRM on PEBs were substantial (β = 0.557, t = 9.786, SD = 0.057, and P<0.001). The mediation role of WENG between GHRM and PEBs is regarded as complementing partial, supporting H7.

Table 7: Indirect Analysis

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>β</th>
<th>T</th>
<th>P value</th>
<th>Hypothesis</th>
<th>β</th>
<th>T</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHRM</td>
<td>0.557</td>
<td>9.786</td>
<td>***</td>
<td>PR</td>
<td>0.124</td>
<td>2.983</td>
<td>***</td>
</tr>
<tr>
<td>PEBs</td>
<td>0.283</td>
<td>3.958</td>
<td>***</td>
<td>H6</td>
<td>0.151</td>
<td>4.094</td>
<td>***</td>
</tr>
<tr>
<td>GPC</td>
<td>0.557</td>
<td>9.786</td>
<td>***</td>
<td>PR</td>
<td>0.124</td>
<td>2.983</td>
<td>***</td>
</tr>
<tr>
<td>WENG</td>
<td>0.283</td>
<td>3.958</td>
<td>***</td>
<td>H7</td>
<td>0.151</td>
<td>4.094</td>
<td>***</td>
</tr>
</tbody>
</table>

Source: author

Note: β = Beta coefficient, T = t-Statistics, HT= Hypothesis, PR= Partial, GHRM: Green Human Resource Management, PEBs: Pro-environmental behaviors ***= Relationships are significant at P<0.005.

Based on our analysis, the results revealed a predictive relevance in terms of predictive power (see Table 8). Each of the PLS-SEM_RMSE values in our study (0.956, 0.962, 0.943, 1.027, 1.02, and 1.022) are less than the LM_RMSE values (0.965, 0.964, 0.954, 1.041, 1.03, and 1.031). Illustrates the strong predictive power of the model. Additionally, the Q² predictor for endogenous latent variables (GPC = 0.329; WENG= 0.291; and PEBs= 0.302) was greater than zero. Thus, the model's predictive efficacy is established (Shmueli et al., 2019).

Table 8: Explanatory predictive power

<table>
<thead>
<tr>
<th>LV Prediction summary</th>
<th>MV Prediction Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV Q²predict</td>
<td>MV Q²predict</td>
</tr>
<tr>
<td>GPC 0.329</td>
<td>GPC1 0.268</td>
</tr>
<tr>
<td>PEBs 0.302</td>
<td>GPC2 0.205</td>
</tr>
<tr>
<td>WENG 0.291</td>
<td>PEB1 0.251</td>
</tr>
<tr>
<td>PEB2 0.204</td>
<td>1.027</td>
</tr>
<tr>
<td>WENG1 0.227</td>
<td>1.02</td>
</tr>
<tr>
<td>WENG2 0.188</td>
<td>1.022</td>
</tr>
</tbody>
</table>

Source: author

Note: LV = Latent variable, MV = Multiple variable
Discussion

Researchers’ interest in HRM’s application to environmental management has grown over the last several years (Dumont et al., 2017; Jackson & Seo, 2010; Renwick et al., 2013; and Mittal & Kaur, 2021). The objective of this research is to find out the effects of GHRM on employees’ PEBs through empirical means. To accomplish this research goal, we first created GHRM measurements. Second, we made use of organizational climate (Dumont et al., 2017; Burke et al., 2002), and behavioral HRM (Jiang et al., 2012; Kim et al., 2019; Nishii et al., 2008; and Saeed et al., 2019). Against this background, we aimed to examine the mediating function of GPC and WENG in the link between GHRM and individuals’ PEBs, drawing on the theories of AMO, JD-R, and SET.

The study found that GHRM positively affected individuals’ PEBs (H1). The results of our research align with the earlier research conducted by Nishii et al. (2008); Becker and Huselid (2006); and Dumont et al. (2017). Employee behavior is determined by the GHRM practices of their organizations, according to Nishii et al. (2008). These practices have a positive impact on employees’ attitudes at work, which in turn improve overall organizational performance (Adjei-Bamfo et al., 2019). (Becker & Huselid, 2006).

This finding presents empirical supporting the literature on behavioral HRM based on three different viewpoints: first, GHRM impacts employee PEBs, which in turn influences organizational performance (Becker & Huselid, 2006); second, GHRM practice features determine how workers’ attitudes are probably going to be affected (Nishii et al., 2008); lastly, GHRM can indirectly impact individuals PEBs via some basic mechanisms such as GPC. (Dumont et al., 2017; Burke et al., 2002) and WENG (Karatepe and Olugbade, 2016; and Aboramadan, 2020).

We discovered that GPC fosters awareness and belief among employees about the organization’s policies, procedures, and best practices as well as about environmental circumstances that align with the company’s green ideals. Additionally, it is conceivable that all of the organizational procedures and guidelines aimed at reducing their adverse effects on the environment and making better use of available resources may not be effective unless the organization establishes a solid green culture. Our results are compatible with those of previous research that suggested workplace conditions and climate may have an impact on employees’ PEBs (Tahir et al., 2020). The earlier research (Dumont et al., 2017) further demonstrated that GHRM should be displayed in a GPC before results are reflected in individual performance. This supports the indirect impact of GPC in the GHRM and PEB connection.

Furthermore, the results clarified that WENG functions as a positive mediator between GHRM and PEBs. This suggests that employees with greater WENG are more likely to engage in reliable and high-quality interactions with their employer, which raises WENG and eventually motivates employees to demonstrate positive outcomes like PEBs. Furthermore, the current study suggests that employees with high WENG exhibit environmentally responsible actions in line with the (Bakker and Demerouti, 2017) JD-R theory. Previous research (Katepe and Olugbade, 2016; Raza et al., 2021) supports this conclusion. The findings on WENG and GPC acting as sequential mediators bring something new to the body of knowledge.

Conclusion

The study looked into how GHRM practices affected PEBs. It also looked into and validated the intervening roles of GPC and WENG. Data were gathered from industrial parks located in Afghanistan’s three major cities, namely Kabul, Herat, and Kandahar. The findings indicated that GHRM had a strong and positive impact on employees’ PEBs (H1), with a beta value of $\beta = 0.283$ and a statistically significant connection $t = 3.958$. The GHRM places a strong emphasis on principles, directives, and initiatives that help organizations achieve their green objectives. Furthermore, the GHRM assists in developing and putting into practice techniques to
raise managers' and employees' knowledge of green behaviors, with an eye on promoting and advancing environmentally friendly endeavors that are advantageous to the company. (H2), confirmed a positive and substantial correlation amongst the GHRM and GPC. With a beta value of $\beta = 0.682$, the statistical relationship was stated as $t= 12.465$. By concentrating on GHRM, HR managers make sure that the organization's strategic goals become more environmentally friendly. The goal of GHRM is to maximize resource use while guaranteeing minimal environmental harm, resulting in a business creating a more environmentally friendly atmosphere as well as places having eco-aware individuals. GHRM produces the GPC and culture Dumont et al. (2017). The third hypothesis describes how GPC significantly and favorably affects employee PEBs. The strength of the association is represented by the values of $t= 3.095$ and beta, which is $\beta = 0.212$.

Green ideals and principles are promoted in the environment created by the GPC. When GPC is implemented in the workplace, workers develop an awareness and belief in the organization's green values through its policies, procedures, and best practices surrounding environmental concerns. Furthermore, H4 verified a statistically significant positive connection ($t = 9.133$) and beta value ($\beta = 0.549$) between GHRM and WENG. According to (H5) the study's findings demonstrated a strong and favorable correlation amongst WENG and PEBs, with a statistical relationship of $t = 4.096$ and a beta coefficient $\beta = 0.275$. Moreover, our research suggests that the correlation concerning employee PEBs and GHRM practices is mediated partially by GPC and WENG. The findings of the mediation process analysis verify that under the mediation of GPC ($\beta = 0.124$, $t= 2.983, P<0.005$) and WENG ($\beta = 0.151$, $t= 4.094, P<0.005$), individual PEBs is connected with GHRM practices. Ultimately, the research showed that the entire null hypothesis was rejected.

The study suggests that there is a connection, between GPC and WENG indicating a sequential relationship between the two variables. In this situation, the impact of GHRM practices on WENG is made possible through the establishment of a GPC within the organization. When an organization fosters a GPC by promoting friendly practices and initiatives it can potentially enhance WENG and ultimately lead to increased pro-environmental behaviors (PEBs) among employees. This sequential relationship implies that GPC, facilitated by GHRM practices plays a mediating role in influencing WENG and subsequently encouraging PEBs among employees. Therefore, these two mediating variables form a chain relationship in the pathway, from GHRM practices to promoting PEBs among employees.

Even though this study was carried out within the Afghanistan context, as was previously indicated, it has substantial implications for managers and academics generally. First, this study offers HR managers empirical data regarding the relative importance of GHRM practices in improving the firm's ability to implement environmentally relevant policies and initiatives successfully and effectively. In addition, our findings revealed that organizations should take a more comprehensive approach to the environmental agenda. In other words, individual traits are essential to growing WENG with the organization's environmental initiatives, besides to the GHRM bundle. More precisely, the data from this study indicated that the direct impact that GHRM practices might have on WENG is strengthened when a cadre with high dedication and positive affect traits is hired. Employees' opinions of the justice and fairness of the company's reward and incentive programs—such as green profit sharing, green worker of the month or year, and one-time payments based on green performance—will therefore be improved by incorporating their PEBs into those programs. As a result, individuals develop optimistic attitudes and exhibit high levels of participation during PEBs.

The research makes the following recommendations for an organization looking to turn green: firstly, HR managers should first seek out and hire employees who are knowledgeable about the environment and able to adopt eco-friendly practices. They should also provide them with training to raise their environmental awareness. Second, environmental elements must be included within performance assessment standards for employee performance reviews or incentive programs. Finally, managers should involve workers in the decision-making process to strengthen employees' environmental commitment and, as a result, enhance their PEBs. This will encourage employees' environmental behaviors. In conclusion, HR managers should encourage employee PEBs and support them by establishing certain guidelines.

The limitations of this study, like all others, should be taken into account while analyzing our findings and offering avenues for further investigation. The primary focus is on gathering data from Afghanistan, a developing nation with a high rate of unemployment. Research indicates that workers who have no other options for employment prioritize productivity over environmental concerns (Islam and Tariq, 2018). Second, while the study was carried out with personnel of the private sector in three Afghan industrial parks, its conclusions could not apply to other contexts. While Afghanistan is making progress in placing green measures into practice to better safeguard the environment, this study may be performed in the future in other areas and nations with diverse cultural norms and across other operational sectors. Third, since this study primarily looked at manufacturing firms, the findings might not apply to businesses that offer services. Therefore, comparative research on the effect of GHRM on manufacturing and service businesses might be taken into consideration to further expand this body of literature. Fourth, as GHRM is a novel concept (Dumont et al., 2017) and its results are only anticipated over the long term, longitudinal research should be the main focus of future efforts rather than cross-sectional research. Finally, the evaluation of the PEBs of the employees was carried out using a quantitative approach, and data were gathered through the use of questionnaires, which may not have been answered truthfully and provided limited information. As a result, we encourage future research to discover particular PEBs of the employees through covert observation of the employees and the use of a mixed methods approach to obtain a deeper understanding of the elements influencing PEBs.
Acknowledgment
All authors have read and agreed to the published version of the manuscript.

Author Contributions: Conceptualization, Z.T., M.A.; methodology, Z.T., M.A.; validation.; formal analysis, Z.T., M.A.; investigation, Z.T.; resources, M.A.; writing—original draft preparation, M.A.; writing—review and editing, Z.T., M.A.

Funding: This research has not been funded

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References

Publisher’s Note: SSBFNET stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2024 by the authors. Licensee SSBFNET, Istanbul, Turkey. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). International Journal of Research in Business and Social Science (2147-4478) by SSBFNET is licensed under a Creative Commons Attribution 4.0 International License.