Implementation of the new higher education curriculum in Indonesia: Perceptions and participation

Sri Wahyuni (a) Wanda Nugroho Yantarto (b) Erna Handayani (c) *

(a)Accounting Departement, Faculty of Economic and Business, Universitas Muhammadiyah Purwokerto, Jl. KHA Dahlan 103 Purwokerto 53182, Indonesia
(b)Faculty of Teacher Training and Education, Universitas Muhammadiyah Purwokerto, Jl. KHA Dahlan 103 Purwokerto 53182, Indonesia
(c)Management Department, Faculty of Economic and Business, Universitas Muhammadiyah Purwokerto, Jl. KHA Dahlan 103 Purwokerto 53182, Indonesia

ARTICLE INFO

Article history:
Received 19 February 2022
Received in rev. form 16 April 2022
Accepted 24 April 2022

Keywords:
Perceptions, user participation, user community, curriculum programs

JEL. Classification:
I20, I21, I23, I28, I29

ABSTRACT

In response to the policy of ‘Independent Learning Program-Independent Campus (MBKM) in Indonesia, this study examines the perceptions and participation of the user community. This quantitative study used 591 questionnaires consisting of lecturers, students, external stakeholders and parents who were processed with statistical structural equation models. Meanwhile, perception and participation are observed variables. The following research procedures and results were used: (1) Exploratory Factor Analysis (EFA) resulted in a perception construct containing three valid sub-constructs, while participation in four valid sub-constructs; (2) Confirmatory Factor Analysis (CFA) for the fit model is determined based on the results of a strong relationship between subconstructs, namely above 0.7; and (3) Structural Equation Model (SEM) to test the relationship between user perception and participation with the results of user participation, the relationship between user partners and students, and the relationship between parents and lecturers (all of which have p-values between 0.842 and 0.909) all of which have strong relationship with each other. As a result, the subconstruction of parents and user partners (β = 0.384), as well as the relationship between user partners and lecturers (β = 0.391), was moderately related. SEM analysis data showed a significant relationship between user perception and participation, with a significant relationship (β = 0.391). Finally, perception variables, specifically benefit, convenience, and belief in the role of perception in improving user community performance, have a statistically significant direct relationship with user participation in the MBKM program with positive relationship.

© 2022 by the authors. Licensee SSBFNET, Istanbul, Turkey. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Introduction

The new policy for the Independent Campus Program, Independent Learning (MBKM) of higher education institutions in Indonesia has been implemented in the 2021-2022 academic year. For students, Merdeka Campus is both an opportunity and a source of difficulty, depending on their circumstances Purwanti (2021). Beneficial to students, teachers, and the institution or college where the program is offered. In addition, Yusuf (2021), MBKM is a breath of fresh air because it gives universities the widest possible freedom to innovate, innovate, and realize various innovations. In line with the aim of the Minister of Education and Culture who wants to see graduates who are ready to face the challenges of the modern world, this is an acceptable result.

This goal is particular, and it is logically conceivable to achieve it through the MBKM software program. What about the actual practice, however? Because there are a total of eight Main Performance Indicators that every university must meet in order to be considered successful. This condition means that numerous things can be done and numerous rules that must be followed during the assessment. As a result, Zulfikar (2021) stated that each university must pay greater attention when deciding what activities and

* Corresponding author. ORCID ID: 0000-0003-0419-6920

© 2022 by the authors. Hosting by SSBFNET. Peer review under responsibility of Center for Strategic Studies in Business and Finance.
https://doi.org/10.20525/ijrbs.v11i3.1713
innovations will be implemented. Is it going to be counted as one of the eight MBKM constructs or not? Furthermore, there are still numerous issues to be resolved in implementing MBKM.

When it comes to practice, however, Prakoso, Ramdani, and Rahmah (2021), it is not as straightforward as the sentence provided by the MBKM software in the first place. For example, when conducting research or engaging in entrepreneurial activities. This program follows the policy of the MBKM, which encourages students to participate in learning activities outside of the classroom setting (Lucardie, 2014; Sanfo, 2020).

There are various options available to them, including conducting research and even engaging in entrepreneurial activity (Higgins et al., 2018). For example, what kinds of research activities can be incorporated into the MBKM framework? So, what exactly can and should students investigate? Apart from that, several questions arise in the context of entrepreneurial activity. For example, what types of entrepreneurial activities might be classified as MBKM activities in a college setting?

According to Prakoso et al. (2021), students' difficulties are caused by their lack of understanding of the MBKM curriculum. Furthermore, Rahmawati (2021) emphasizes that the challenge faced by students is their low perception of their ability to react to the shifting learning paradigm. In contrast, Adrianus et al. (2021) assert that students who are unable to adapt and improve themselves due to changes in the curriculum system will have a negative perception of the MBKM program. As a result, it should be stressed that students' perceptions play a role in determining how successful the program's implementation is.

Furthermore, the MBKM program, which professors attend, demonstrates that the presence of lecturers significantly increases the success of the activities conducted there. As the activity progressed, the lecturers encountered several difficulties. This problem occurred due to a lack of understanding application technique, which also occurred. According to Kodrat (2021), the execution of lecturers must be accompanied by a clear understanding of the MBKM program's overall scope and objectives. Because of the positive, lecturers can overcome the difficulties they encounter. However, Sakti and Darsim (2020) asserted that the low level of appreciation among lecturers would result in a low level of knowledge about the program's structure and operation. As a result, it will impact the success of the program's implementation.

It is also necessary to look at the successful implementation of the MBKM program, which was organized by lecturers and students, from their participation. According to Krishnanpatria (2021), the greater the number of students who participate in the program, the greater the likelihood of their success. This program can succeed when also demonstrated by lecturers' high level of participation in its implementation (Sandi, 2021). As a result, the high level of participation of lecturers and students can be interpreted as a clear indication that the MBKM program has been approved and can be implemented successfully and effectively.

The level of perception and participation of students and lecturers in the MBKM program are also considered. Another source of concern is the lack of information from other user communities, particularly stakeholders, about the successful implementation of the MBKM program. As stated by Adisaputera et al. (2021), the involvement of student parents and other stakeholders can impact the overall quality of the program's implementation. This statement is because the MBKM program collaborates with stakeholders to develop programs such as entrepreneurial activities, internships, independent projects, and topical actual work lectures. In order to examine and research the mastery of stakeholder understanding and engagement in the MBKM program. As a result, the difficulties encountered were due to a lack of knowledge. Lecturers and students who thoroughly understand the program will better evaluate their abilities (Rohmad, 2020).

Meanwhile, students' level of perceptions and participation is inextricably linked to the role of parents, who ensure student safety and monitor student activities during the MBKM program's implementation (Maksum, 2021). The excellent understanding of the MBKM program by parents, according to Salam and Irawan (2021), can have an impact on the success rate of activities in which pupils participate. Students can benefit from the constructive input provided by their parents, who can help them understand the circumstances and conditions in the field (and so on). This support benefits students with a support system from their parents when dealing with problems that arise during activities (Prahani et al., 2020).

As a result, it is possible to conclude that the success of the MBKM program can be determined by the perception and participation of the user community. MBKM program execution is evaluated in terms of perception and participation by the user community, which is determined by the user community's level of perception and participation. As a result, this study investigates the evaluation of the MBKM program's execution based on the user community's perceptions and participation, which includes lecturers, students, stakeholders, and parents of students involved in the program's implementation.

Literature Review

Independent Learning Program-Independent Campus (MBKM)

A program designed by the Minister of Education and Culture to encourage students to master multiple sciences to better prepare them for entering the workforce after graduation is known as the Independent Learning Program - Merdeka Campus. It is possible to participate in various programs through the Independent Learning Program – Independent Campus (MBKM), including Certified Internship, Independent Student Exchange Program, Teaching Campus, and Certified Independent Study Project (Nurtjahyati &
Sukisno, 2021). As a result of this program, the world of higher education in Indonesia has reached a watershed moment. In particular, universities should be given the freedom to allow students to walk around as much as possible (Rohinsa, 2020). Students will benefit from a variety of engaging activities included in the program, which will help them become well-versed in their fields of study after completing their higher education degrees (Baharuddin, 2021). The only thing that distinguishes it from the others is that it cannot be applied as simply as rotating the palm. Each job must still be carefully calculated before it is carried out in order for children to gain the necessary competence to perform them (Suhendra et al., 2020). It is one of the policies of the MBKM to provide students with the opportunity to study in a discipline other than their primary discipline. Students can gain knowledge and skills from various occupations under the provisions of this legislation (Insani et al., 2021). Student participation in courses outside of their study program at the same university; participation in courses within the same study program at different universities; participation in courses within the same study program at different universities; or participation in learning opportunities outside of tertiary institutions are all possibilities (Al Anshori, 2021). As a result, when students graduate, they will have a diverse range of exciting talents to draw upon when they enter the labor force.

Perception

Perception is how individuals select, organize and interpret information to create an overall picture of an object (Kotler, 2005). Perception can be defined as a selective process of categorization and interpretation. The factors that influence a person's perception are the perceived characteristics of the person and situational factors.

Referring to the theory of Kotler, (2005) in the implementation of MBKM, user and user perceptions will affect how individuals receive new system information, from the aspect of usefulness, and the objectives of the MBKM program. This research adopts Acceptance Model theory (Davis et al., 1989). TAM is a model commonly used to measure perceptions of acceptance of information systems (Ma & Liu, 2011); with perceptions of those built with 6 constructions, namely: external variables, user perceptions of convenience (perceived ease of use), user's perception of perceived usefulness, attitude toward using, attention to use (behavioral intention to use), and actual usage.

In this study, the perception of attitudes arising from knowledge, the perception of the ease of the program and the perception of usefulness are used.

Perceptions in the implementation of MBKM in this study are described in a descriptive narrative on the design of collecting questionnaire data to MBKM users and users who are involved both from elements of universities and university partners to see the readiness of implementation and participation in the MBKM program.

Furthermore, the perception of acceptance of the MBKM program is related to participation, to see how far the perception of the public involved in MBKM has affected their participation. Referring to the research of Liu et al.,(2021), a supportive perception will affect participation so that this study measures the community participation of users and MBKM users are associated with their perceptions.

Research and Methodology

Respondent Profile

This study employs a quantitative approach in the form of a cross-sectional survey for its findings (Creswell, 2014). With this strategy, we may receive a complete view of the situation that we are looking at, Kline, since it is more detailed (2017). As a result of the advantages that this quantitative cross-sectional survey method offers in data collection and processing, the research is more robust and high-quality (Creswell, 2014).

Students, parents, lecturers, and other stakeholders from the MBKM program took part in the study conducted in 2012. They participated in the study by completing online questionnaires throughout the 2020/2021 academic year and were included in the sample. It was decided to include 593 respondents in the survey's sample. The following table displays the demographic profile of those who took part in this survey, including information about their age, gender, and educational background.

<table>
<thead>
<tr>
<th>Data Respondents</th>
<th>Frequency (N=593)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturers</td>
<td>117</td>
<td>19.73</td>
</tr>
<tr>
<td>Students</td>
<td>239</td>
<td>40.30</td>
</tr>
<tr>
<td>Parents</td>
<td>128</td>
<td>21.59</td>
</tr>
<tr>
<td>Stakeholders</td>
<td>109</td>
<td>18.38</td>
</tr>
</tbody>
</table>
We discovered that 15.38 percent of doctoral-level lecturers had a demographic component, with the remaining 84.62 percent having a demographic component at the master's level. Female lecturers accounted for 42.31 percent of those who took part in this study; men accounted for the remaining 57.69 percent of those who took part. Male students make up 19.22 percent of all pupils, compared to female students, who make up 79.88 percent of all students. The result is that there is a difference in educational attainment across user partners, with the majority having a bachelor's degree and the remainder having master's degrees (17 percent) and doctoral degrees (14 percent). While this is the case, government employees account for 75% of the respondent's parents' employment, with the remaining 15% being private sector employees. According to the study, males outnumber females by a margin of 63.89 percent to 36.11 percent among those who responded to the parent survey questions. In addition, the demographic component of parents' educational level is led by high school graduates (44 percent), followed by undergraduate graduates (31 percent), and the remainder are at the diploma level (3 percent) or junior high school level (1%).

Instruments' Validation

The reliability of respondents' responses to the assessed items was tested in this study through reliability measures and procedures. In order to determine whether the instruments developed in different cultures and education systems can be used in the culture and education system under consideration, it is necessary to conduct this investigation. For mathematical reliability instruments and mathematical experience, the Cronbach's alpha coefficient is used to calculate the internal reliability of the instrument, taking into consideration that responses are selected using a Likert scale for mathematical reliability instruments and mathematical experience (Cohen et al., 2013). According to Mills (2012), Cronbach's alpha is a number between 0 and 1, with a value of 0 indicating no internal reliability and a value of 1 indicating perfect internal reliability, and 1 indicating perfect internal reliability. Cronbach's alpha value of 0.70 is widely regarded as the bare minimum in terms of reliability (Tabachnick & Fidell, 2014). Therefore, according to social science experts, an acceptable coefficient of dependability is defined as a value greater than or equal to 0.70 compared to the maximum value of 0.70. Cronbach's alpha was calculated in this study, and a value of 0.7 or higher was used to indicate reliability.

The Exploratory Factor Analysis

The construct validity of the questionnaire instrument was determined by analyzing the data collected and applying analytical criteria to the outcomes. It was decided to consider the recommendations made by Tabachnick and Fidell (2014), which received a coefficient value more significant than 0.3 from the researchers. Several tests were carried out before the factor analysis could be completed, including Barlett's test of sphericity and the Kaiser-Meyer-Okin measure of sampling adequacy (KMO). Expressly, a significant Barlett's Test of Sphericity (p < 0.05) indicated that the correlation between items was sufficient for factor analysis, and a KMO test result more excellent than 0.5 indicated that the data did not have multicollinearity problems and that the items were appropriate for factor analysis. The varimax rotation test was then carried out to determine the validity of the concept and the validity of the items included in the various components of the questionnaire in the following step. To examine the diversity of dimensions or indicators that exist in both perceptions and user participation, the Exploratory Factor Analysis (EFA) approach has been used when conducting construct validity procedures for perceptions and user participation. Low loading factor items (those with a loading factor of less than 0.5) will be rejected according to the order in which they were received (Kline, 2017). A common technique researchers use to sort through a large number of questionnaire items and organize them into specific constructs related to one or more dependent variables in a study is factor analysis.

The Confirmatory Factor Analysis

A structural model cannot be constructed without first filtering the data, which can be accomplished through EFA, pooled validation factor analysis, validity indexes, reliability, and appropriate goodness of fit index for all instruments. Concerning modeling processes, the researcher refers to two described by Kline (2017): Testing the measurement model first ensures that it corresponds to the data, and testing the structural model generated by connecting the measurement model with enablers change or with all measurement models follows. Pooled Confirmatory Factor Analysis (CFA) was used to determine whether or not the measurement model was compatible with the data in this investigation (Hair et al., 2014). According to Hair et al. (2014), the CFA analysis was used to confirm the extent to which the measurement model measures variables reflecting constructs in the measurement model and that the results were published in 2014. The validity and reliability of the construct were evaluated based on the results of the CFA pooled analysis, which was conducted. A loading factor of more remarkable than 0.05 will be removed from the model, and the model will be statistically tested using a goodness-of-fit score to ensure that it matches the respondent information. After determining whether or not the model provides an acceptable fit, the study will move on to the next step, which will involve testing the structural model.

This study discovered that three types of equivalence indexes could be used to measure model equivalence with study data: the absolute fitting index, the cumulative fitting index, and the parsimonious fitting index. The absolute fitting index is the most accurate of the three. Several metrics are used to assess the absolute fit, including the Root Mean Square of Error Approximation (RMSEA) and the Goodness of Fit Index (GFI). In contrast, several metrics are used to assess the incremental fit, including the Adjusted Goodness of Fit Index (AGFI), Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), and Normed Fit Index (NFI). Parsimonious fit also includes the relationship between Chi-Square and degree of freedom (Chi-Square/df), another component of parsimonious fit. It is considered a good match when the Chi-square/df is less than five and the RMSEA is more minor than 0.08, and the equivalency index values for the GFI, CFI, TLI, and NFI are greater than 0.90 for each of the four variables (Kline, 2017).
The Contribution Value

When a value is less than 0.10, the contribution can be divided into three categories: 1) little contribution; 2) medium contribution; and 3) significant contribution (Kline, 2017). The degree of insignificant contribution (0.10) and negative contribution (0.10) was deemed inconsequential. In this case, the hypothesis will be rejected even if the p-value is significant if the p-value is less than 0.10 and the hypothesis is negative.

Result and Findings

The Exploratory Factor Analysis of Perceptions and User Participation

The perceptions and public participation constructs were chosen to employ the EFA method to explore them to assess the diversity of dimensions or indicators that exist in each of the three instruments. Items with low loading factors (less than 0.5) will be deleted in a phased manner, starting with the most minor loaded items and progressing up the list until all of the items with low loading factors have been removed (Hair et al., 2014). When conducting a study, researchers can use factor analysis to discover, reduce, and arrange many questionnaire questions into different constructs under the variables under consideration, which can then be further investigated.

The fact that the Kaiser Meyer-Okin (KMO) value for the items in the perceptions constructs questionnaire increased significantly (0.959), exceeding the value of 0.50, indicated that the data did not have a severe multicollinearity problem and that factor analysis could be used to analyze the items in the construct successfully was a significant finding. When the item in question was subjected to Barlett's test of sphericity, a statistically significant value of 0.000 (p<0.05) was obtained, indicating that the item meets the criteria for factor analysis. Furthermore, according to our public Participation construct analysis, each item in the participation construct questionnaire had a KMO value greater than 0.50 (0.810). This indicates that the data does not contain any significant multicollinearity problems and that factor analysis can be used to determine whether the items in the construct are related to one another. After doing Barlett's test of symmetry, it was concluded that the item had a statistically significant value of 0.001 (p<0.05), which indicates that it is appropriate for factor analysis (Byrne, 2019).

The Confirmatory Factor Analysis of Perceptions and User Participation

According to the results of the EFA analysis mentioned above, the perceptions may be separated into three sub-constructs, which are as follows: benefits, convenience, and beliefs. The perception of benefits is made up of seven items (TPM1, 2, 3, 4, 5, 6, 7), the perception of convenience is made up of six items (TPK1, 2, 3, 4, 5, 6), and the perception of beliefs is made up of six items (TPI1, 2, 3, 4, 5, 6). The perception of benefits is made up of seven items (TPM1, 2, 3, 4, 5, 6, 7), the perception of convenience is made up of six items (TPK1, 2, 3, 4, 5, 6), and the perception of beliefs is made up of six items (TPI1, 2, 3, 4, 5, 6). A relationship between the perceived benefits and perception convenience was discovered using the data from the CFA model. This relationship was found to be 0.943%. While this is going on, the correlation between sub-constructs between the sense of convenience and beliefs is 0.970. The relationship between the perception of benefits and the beliefs is the final sub-construct relationship, with a 0.870-correlation coefficient. As a result, there is a strong link between the three sub-constructs. As a result, it is possible to explain why each sub-construct correlates with the others.

On the other hand, the User Participation construct is broken into four sub-constructs: parents and children, students, stakeholders, and lecturers. The parents are represented by five items (OT1, 2, 3, 4, 5), students are given by five pieces (MH1, 2, 3, 4, 5), and stakeholders are served by five parts each (MT1, 2, 3, 4, 5) while the lecturers are covered by six items overall (DS1, 2, 3, 4, 5, 6). Specifically, high and medium correlation coefficients between each sub-construct of the public participation model are separated into two categories: high and medium correlations between sub-constructs. Relationships between parents and students (β = 0.675), student and lecturer relationships (β = 0.675), the relationship between user partners and students, and the relationship between parents and lecturers (β = 0.842 and 0.909) were found to have a strong association between sub-constructs. While the relationship obtained from the sub-construct of parents and user partners and the relationship between user partners and lecturers (β = 0.384; β = 0.391) are both positive, the relationship obtained from the sub-construct of parents and user partners is medium.

Structural Equation Model

A model's consistency with the data from the investigation is determined through this review. It is necessary to first examine the equivalence index before proceeding with the analysis to guarantee that a suitable model has been proposed that is commensurate with the respondent's data. In order to achieve the level of equivalence required for it to be declared equivalent, there are three equivalence categories, and each category demands the employment of at least one equivalence index to achieve the level of equivalence required for it to be declared equivalent. According to the results of the Structural Equation Model (SEM) study, the value of the RMSEA is 0.113, and the value of the CMIN/df is 3.974, both of which are less than 5.0, and the value of the RMSEA is less than 5.0. The compatibility indices have values of 0.958 for the CFI, 0.931 for the TLI, and 0.945 for the NFI. However, according to the analysis, a statistically significant level of concordance was discovered between these three forms of data. When it comes to the perceptions and public participation measurement model, the conclusion was made by declaring that it is consistent
with the data that has been acquired. Figure 1 depicts a detailed discussion of the SEM model of perceptions and public engagement in greater depth.

Three variables are discovered during the inquiry into the relationships between the variables under discussion. The variables to be considered include the regression weights (β), standard error (SE), critical ratio (CR), and significant coefficients, all of which are standard. Because they are statistically significant, they are considered when deciding whether to accept or reject the hypothesis. It is possible to classify the relationship between constructs into three types. For values less than 0.10, the contribution stage is characterized by a low contribution, for values between 0.10 and 0.50, the contribution stage is characterized by a moderate relationship, and for values larger than 0.50, the contribution stage is characterized by a large contribution. Contribution stages are classified as low contribution stages when values are less than 0.10 (Cohen et al., 2013). Whenever the connection stage is little (0.10) and the consequence is poor, it is deemed unimportant to be present at that time. In other words, even though the p-value is statistically significant, if it is less than 0.10 and negative, the hypothesis will be rejected, regardless of whether or not the p-value is statistically significant in the first place. Any outcome with a p-value of less than 0.05 is considered statistically significant, regardless of the data source. According to the findings of the study, the SEM analysis of the two constructs revealed a moderate association (β = 0.391; SE = 0.197; CR = 3.598; p = 0.000; p < 0.001) between perception and public participation in the MBKM program.

Among the significant indicators for constructing the degree of user perception were TPM (β = 0.206; SE = 0.300; CR = 2.995; p = 0.003; p < 0.05), TPK (β = 0.963; SE = 1.124; CR = 4.564; p = 0.001; p < 0.05), and TPC (β = 0.246; SE = 0.421; CR = 1.325; p = 0.001; p < 0.05). All user community perception level constructs were found to be statistically significant, with particularly strong contributions from TPM, TPK, and TPC, among others (0.892; 0.931; and 0.912). The user participation construct yielded significant results for students (β = 0.721; SE = 2.420; CR = 2.421; p = 0.024; p < 0.05), lecturers (β = 0.734; SE = 0.064; CR = 1.909; p = 0.056; p > 0.05), stakeholders (β = 0.621; SE = 0.068; CR = 1.524; p = 0.028; p < 0.05), and parents (β = 0.760; SE = 3.994; CR = 3.081; p = 0.002; p < 0.05).

On the other hand, this section offers a comparison between an organizational model that measures the level of perception of the user community and a model that measures public engagement for each user community of the MBKM program, which includes lecturers and students' parents, and stakeholders. Figure 2 shows the results of the SEM analysis, which shows that a comparison of the relationship between Perception and Lecturer’s Public Participation on the MBKM program reveals that the relationship between perceptions and lecturer's public participation on the MBKM program is high (β = 0.842; SE = 0.520; CR = 2.421; p = 0.024; p < 0.05), i.e., the relationship between perceptions and lecturer's public participation on the MBKM program obtained a high relationship (β = 0.842).
It was discovered during the comparison of the relationship between perceptions and public participation of students on the MBKM program that the relationship between perceptions and public participation of students on the MBKM program was high ($\beta = 0.713; SE = 0.453; CR = 1.938; p = 0.000; p < 0.001$), the relationship between perceptions and public Participation of students obtained a high relationship ($\beta = 0.713$) Figure 3 depicts a detailed investigation of the amount of perception associated with student public participation in greater detail.

![Figure 3: The SEM Analysis of Perceptions and Students Participation.](image)

Moreover, according to Figure 4, Comparison of the relationship between stakeholders' Perception and Public Participation on the MBKM program, it is discovered that the relationship between perception and public Participation of stakeholders in the MBKM program is high ($\beta = 0.661; SE = 1.188; CR = 2.171; p = 0.015; p < 0.05$), indicating that there is a strong relationship between perception and public Participation of user partners on the MBKM program.

![Figure 4: The association between perception and stakeholder participation](image)

Finally, in Figure 5, which shows a comparison of the relationship between Parents' Perception and Public Participation of Students' Parents on the MBKM program, it is discovered that the relationship between perceptions and public Participation of students' parents on the MBKM program is moderate ($\beta = 0.382; SE = 5.332; CR = 3.872; p = 0.030; p < 0.05$), the relationship between perceptions and public Participation of parents is moderate.
Discussion

With the interactions in the structural model are incredibly complex and challenging to understand (Byrne, 2019). In general, Kline (2017), the structural model, can see the relationships in the model as both direct and indirect, depending on the perspective taken. On the other hand, these existing relationships can be distinguished by a standardized regression weighting coefficient, which is referred to as the strength of the contribution in this paper. A further finding of the present study is that, between the two variables in the structural model, the power of the grant provides an alternative answer to the question of how perceptions and participation can affect the implementation of the MBKM program. Finally, in the final structural model, four relationships have been confirmed to be significant based on the type of user community being studied, namely lecturers, students, stakeholders, and parents, among other things.

When viewed from the perspective of variables, perception has a more significant influence on participation in the implementation of the MBKM program than other variables. The magnitude of the perceived value indicates that this variable is the most important factor in influencing user community participation in the MBKM program, as indicated by the magnitude. Besides, Romla (2021) implied that the perception part becomes more significant because this variable indicates the strength of the user community and is directly related to each user community in the MBKM program, making the perception part more meaningful. Also, Permono et al. (2021), a fundamental step of participation carried out by every user community is the consideration of the usefulness, convenience, and trust in perception as necessary factors in technical tasks. According to the Technology Acceptance Model, Surendran (2019), this has also been stated (TAM). According to TAM, the processes of benefits, convenience, and trust are all involved in completing technological tasks such as processing, remembering, making quick decisions, and generating ideas, among other things.

When it comes to the MBKM program, on the other hand, Simatupang and Yuhertiana (2021), the teacher perception model emphasizes the importance of benefits such as convenience and trust in a particular domain because the perceptions held by the user community lead to innovative efforts to incorporate technology into the activities carried out in the MBKM program (Insani et al., 2021). Following the description in Yusuf (2021), it can be concluded that the perception of the user community in the processing of information applied in the MBKM program can significantly impact the Participation that is performed. This impact explains why perception is the most crucial factor in the resulting structural model. Developing perceptions of the MBKM program is greatly aided by generating the numerous and unusual ideas required in technological assignments. Furthermore, Syarif (2021), the function of trust in activities by the user community in the tasks and activities carried out in the MBKM program has a positive impact on the level of Participation achieved through the program.

According to the findings of this study, parents' perceptions of their student's participation in the community are moderately optimistic. This perception is because to increase MBKM program participation, it is necessary to develop and refine specific skills. Prior to that, Yuhastina et al. (2020), parents must believe in advance that the role of technology is a potential that can be nurtured in order to improve their perception of the world around them. Because participating in activities within the MBKM program is difficult and time-consuming. As a result, parents take a strong interest in providing a space to train themselves to think creatively and interact with their children at home.

Subsequently, this study reveals that participation in the MBKM program is highly valued by lecturers, students, and other stakeholders, according to the findings. On the other hand, the perception of technology in the task impacts the level of participation achieved that implies understanding the MBKM program must go hand in hand with mastery of technology in the implementation and provision of participants' participation opportunities. Numerous perspectives assert that technology skills have been thoroughly mastered among lecturers, students, and other participants (Hairunisya, 2021).
According to the findings of this study, perception is an understanding that must be developed and refined to achieve the goal of increasing knowledge about the MBKM program, as explained in the study. However, Zulfikar (2021), before that can happen, the user community must first believe that their contribution has the potential to be developed. For the simple reason that carrying out activities in the context of the MBKM program is complicated and time-consuming. As a result, in the MBKM program, teachers take a strong interest in providing opportunities for students to develop their creative thinking skills.

Meanwhile, this research demonstrates that mastery of technological knowledge is a requirement that cannot be overlooked. This is because the MBKM program makes extensive use of technology in the course of its implementation tasks. This implies that the preservation of technological knowledge must go hand in hand with the mastery of comprehending MBKM activities to be effective. Many people believe that to participate effectively, the user community's technological skills must be completely mastered (Suharyanti et al., 2021).

The study's findings also reveal a moderate contribution of strength, the relationship between the level of perception and the Participation by members of the user community in the MBKM program (r = 0.384). It is possible to conclude that all of the relationships discovered in the model are significant, even though the contribution is of moderate strength. Current contributions of strength continue to provide their sources of strength. Thus, this finding implies to teachers that technological developments impact participation in internships and humanitarian research activities, as well as on the participation of technological knowledge in the implementation of activities in internships and humanitarian research. For example, increasing technological knowledge can improve technical skills in internship activities, and research can be used to further humanitarian research in this MBKM program. This gradual and directed focus allows the sender to be more focused and systematic because they are already aware of the relationships between more dominant things (Nurtjahyati & Sukisno, 2021).

Because of the strong relationship between perceptions of the nature of the MBKM program and participation by the user community in this program, these characteristics will likely continue to be relevant in the future. Similarly, Purwanti (2021) finds that the perception of the nature of MBKM activities is dynamic and takes into account the role of technological advancement. This is related to the belief in the role of technology in implementing the MBKM program, which is expressed through adhering to the nature of technology. Depending on the selection of items, such as mastery of technology, it can be determined whether the problem has been solved correctly in various ways.

Apart from this, according to previous research (Amalia, 2021; Rohinsa, 2020), students believe that technology is essential for them if they want to increase participation in the MBKM program and make significant contributions to improving information accessibility. This is because the elements of the MBKM program include elements that incorporate students' perceptions of the characteristics of technology (Rohinsa, 2020). Also, Amalia (2021), this technological tool, which is included in the MBKM program collection, is still in use, no matter what type of government-sponsored activity is being carried out at the time. Students must master all aspects of technology to run the programs they are learning to run effectively.

A positive and statistically significant relationship is also found between stakeholders' perceptions of the benefits of the MBKM program and the program's outcomes. It has been found that the findings of this study are consistent with those of previous studies (Salam & Irawan, 2021; Sandi, 2021). As stated by Sandi (2021), the positive outcomes of the MBKM program serve as indicators of the level of perception that can influence the level of participation of the user community in the MBKM initiative. It is asserted that stakeholders who demonstrate positive knowledge and benefits from their participation will have more significant potential to form hypotheses and form effective collaborations with other user communities, such as lecturers and students, due to their positive knowledge and benefits. It is anticipated that this will encourage the development of innovative ideas in the perception of the MBKM program (Salam & Irawan, 2021).

Meanwhile, according to Kodrat (2021), the ease with which stakeholders can participate and their trust in the process will positively impact their understanding of MBKM and the level of cooperation they engage in. In general, the three fundamental knowledge processes for implementing MBKM are the following: benefits, convenience, and stakeholder trust in stakeholder perceptions (Krishnapatria, 2021). Participation in the implementation of activities is perceived positively by stakeholders, which has a positive impact on the MBKM program.

It was discovered through the analysis of this research that belief in perception is a catalyst for developing problem-solving abilities. According to Baharuddin (2021), various beliefs have been applied to overcome the problem of negative attitudes toward technology. Among these beliefs are Believers in the role of technology in education are what many researchers refer to as "beliefs in the role of technology in education" (Adisaputra et al., 2021). As a result, many researchers believe that it is important to pay attention to people's beliefs about the role of technology. The belief in the role of technology, according to Sanfo (2020), aims to involve the user community in the process of overcoming problems associated with the MBKM program. Ellerani and Gentile (2018) stated in their study that lecturers and students must understand the significance of technology in real life in order for them to be able better to appreciate the perception and participation of the MBKM program. Lecturers and students can increase their participation in program implementation by altering their beliefs about the role of perceptions. Understanding the significance of the role of technology in education can guide lecturers and students in incorporating technology into their lessons to foster perceptions and participation in the implementation of the programs that are being implemented in the classroom (Prestridge, 2018).
Furthermore, according to Vygotsky’s theory (1978), the development of cognitive technology, (Vygotsky, 1978)(Vygotsky, 1978)(Vygotsky, 1978)(Vygotsky, 1978)(Vygotsky, 1978)(Vygotsky, 1978)(Vygotsky, 1978)(Vygotsky, 1978)(Vygotsky, 1978)(Vygotsky, 1978) that Education 4.0 is currently taking place, necessitates the participation of the entire user community in all activities aimed at realizing their full potential through technology. Lecturers and students, the primary actors in the MBKM program, have a significant role in developing their potential through technology; some of them are actively involved in entrepreneurial activities, humanitarian research, internships, and the teaching of technology in schools, among other activities. As a result, the application of technology can enhance the quality of their understanding and perception of their participation in the MBKM program. Following this, Nurtjahyati and Sukisno (2021), Stakeholders, also assist students in understanding the implementation of this program by actively using their activities with technology to accompany the pace of student understanding. Humanitarian programs, internships, and entrepreneurial activities can benefit from applying cooperative efforts and the fulfillment of product and service quality standards. Technology can be the primary business required to be included in these activities. An additional point, which is also explained by Sakti and Darsim (2020), is that parents, in their role as monitors of the implementation of student activities at home, are also required to motivate themselves by using technology as a tool for the process of supervision and tracking of student understanding and activities carried out by students.

The findings of this study, which are consistent with previous findings (Kodrat, 2021; Maksum, 2021; Rohmad, 2020), also demonstrate that superiority in technological mastery not only has an impact on the perception of the user community but also has an impact on increasing participation in the implementation of MBKM program activities, which include teaching in schools, independent studies, humanitarian research, entrepreneurial activities, and internships in the industrial sector (Rohmad, 2020). This study demonstrates that trust in technology and its benefits in education are important because they are directly related to perceptions of the ease with which MBKM can be implemented in daily activities.

Conclusion

When viewed from the perspective of variables, perception has a more significant influence on participation in the implementation of the MBKM program than other variables. The magnitude of the perceived value indicates that this variable is the most important factor in influencing user community participation in the MBKM program, as indicated by the magnitude. According to the findings of this study, parents' perceptions of their children's participation in the community are moderately optimistic. This is because, to achieve the goal of increasing MBKM program participation, it is necessary to develop and refine specific skills. Subsequently, this study reveals that participation in the MBKM program is highly valued by lecturers, students, and other stakeholders, according to the findings. This is because the perception of technology in the task impacts the level of Participation that is achieved. This implies that understanding the MBKM program must go hand in hand with mastery of technology in the implementation and provision of participants' participation opportunities. The study’s findings also reveal a moderate contribution of strength, the relationship between the level of perception and the Participation by members of the user community in the MBKM program. A positive and statistically significant relationship is also found between stakeholders' perceptions of the benefits of the MBKM program and the program's outcomes. Therefore, the positive outcomes of the MBKM program serve as indicators of the level of perception that can influence the level of participation of the user community in the MBKM initiative. It is asserted that stakeholders who demonstrate positive knowledge and benefits from their participation will have more significant potential to form hypotheses and form effective collaborations with other user communities, such as lecturers and students, due to their positive knowledge and benefits. It is anticipated that this will encourage the development of innovative ideas in the perception of the MBKM program.

In conclusion, demonstrate that the perception variables, particularly the benefits, convenience, and beliefs in perceptions’ role in improving the performance of the user community, have a statistically significant direct relationship with the user participation in the MBKM program. However, a joint guide is required that can be used as a benchmark for the user community to implement the policy, particularly the perceptions and participation experiences related to this policy. This policy has long been applied in the learning process in universities, and all that remains is a combination of the various existing aspects.

This research study is still limited to discussions related to the MBKM curriculum. MBKM activities are part of the independent learning curriculum in Indonesia. This curriculum consists of several activities. Further studies need to discuss the pillars of activities in the curriculum.

Acknowledgement

All authors have read and agreed to the published version of the manuscript. Our high appreciation goes to the Research and Service-Based Collaborative Learning Grant Fund Program. Ministry of Education, Culture, Research, and Technology, University of Muhammadiyah Purwokerto and all respondents from various institutions, partners and parents who have participated in this research.
Author Contributions: Conceptualization, S.W., E.H. and W.NY.; methodology, E.H. and W.NY.; validation, S.W., E.H. and W.NY.; formal analysis, S.W., E.H. and W.N.; investigation, S.W., E.H. and W.NY.; resources, S.W., E.H. and W.NY.; writing—original draft preparation, E.H. and W.NY.; writing—review and editing, S.W., E.H. and W.NY.; supervision, S.W.; project administration, E.H.; funding acquisition, E.H.

Funding: This research was funded by Research-Based Collaborative Learning Grant Fund Assistance and Devotion. Ministry of Education, Culture, Research, and Technology, Indonesia.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Institutional Review Board Statement: Ethical review and approval were waived for this study, due to that the research does not deal with vulnerable groups or sensitive issues.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References

Publisher’s Note: SSBFNET stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee SSBFNET, Istanbul, Turkey. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

International Journal of Research in Business and Social Science (2147-4478) by SSBFNET is licensed under a Creative Commons Attribution 4.0 International License.