Random Regression Forest Model using Technical Analysis Variables

An application on Turkish Banking Sector in Borsa Istanbul (BIST)


  • Senol Emir
  • Hasan Dincer
  • Umit Hacioglu
  • Serhat Yuksel




Random Forest Regression, Artificial Neural Networks, Technical Analysis, Banking Sector, Variable Importance


The purpose of this study is to explore the importance and ranking of technical analysis variables in Turkish banking sector. Random Forest method is used for determining importance scores of inputs for eight banks in Borsa Istanbul. Then two predictive models utilizing Random Forest (RF) and Artificial Neural Networks (ANN) are built for predicting BIST-100 index and bank closing prices. Results of the models are compared by three metrics namely Mean Absolute Error (MAE), Mean Square Error (MSE), Median Absolute Error (MedAE). Findings show that moving average (MAV-100) is the most important variable for both BIST -100 index and bank closing prices. Therefore, investors should follow this technical indicator with respect to Turkish banks. In addition ANN shows better performance for all metrics.


Abarbanell, J. S., & Bushee, B. J. (1997). Fundamental analysis, future earnings, and stock prices. Journal of Accounting Research, 35(1), 1-24.

Aldin, M. M., Dehnavi, H. D., & Entezari, S. (2012). Evaluating the employment of technical indicators in predicting stock price index variations using artificial neural networks (case study: Tehran Stock Exchange). International Journal of Business and Management, 7(15), 25.

Almujamed, H. I., Fifield, S., & Power, D. (2013). An investigation of the role of technical analysis in Kuwait. Qualitative research in financial markets, 5(1), 43-64.

Bauer, R. J., & Dahlquist, J. R. (1999). Technical Markets Indicators: Analysis & Performance (Vol. 64). John Wiley & Sons.

Benoit, D. F., & Van den Poel, D. (2012). Improving customer retention in financial services using kinship network information. Expert Systems with Applications, 39(13), 11435–11442.

Berthold, M. R., Borgelt, C., Höppner, F., & Klawonn, F. (2010). Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data: Making Practical Sense of Real Data. Springer.

Bitvai, Z., & Cohn, T. (2015). Day trading profit maximization with multi-task learning and technical analysis. Machine Learning, 101(1-3), 187-209.

Blume, L., Easley, D., & O'hara, M. (1994). Market statistics and technical analysis: The role of volume. The Journal of Finance, 49(1), 153-181.

Booth, A., Gerding, E., & McGroarty, F. (2014). Automated trading with performance weighted random forests and seasonality. Expert Systems with Applications, 41(8), 3651–3661.

Boxer, H. (2014). Moving Average Convergence/Divergence. Profitable Day and Swing Trading: Using Price/Volume Surges and Pattern Recognition to Catch Big Moves in the Stock Market, 91-102.

Bray, M. (1981). Futures trading, rational expectations, and the efficient markets hypothesis. Econometrica: Journal of the Econometric Society, 575-596.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5), 1731-1764.

Brown, S. J., Goetzmann, W. N., & Kumar, A. (1998). The Dow theory: William Peter Hamilton's track record reconsidered. The Journal of finance, 53(4), 1311-1333.

Burez, J., & Van den Poel, D. (2009). Handling class imbalance in customer churn prediction. Expert Systems with Applications, 36(3, Part 1), 4626–4636.

Cervelló-Royo, R., Guijarro, F., & Michniuk, K. (2015). Stock market trading rule based on pattern recognition and technical analysis: Forecasting the DJIA index with intraday data. Expert Systems with Applications, 42(14), 5963-5975.

Chang, P. K., & Osler, C. L. (1999). Methodical Madness: Technical Analysis and the Irrationality of Exchange‐rate Forecasts. The Economic Journal, 109(458), 636-661.

Chavarnakul, T., & Enke, D. (2008). Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications, 34(2), 1004-1017.

Chong, T. T. L., & Ng, W. K. (2008). Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30. Applied Economics Letters, 15(14), 1111-1114.

Cook, T. E. (1985). The bear market in political socialization and the costs of misunderstood psychological theories. American Political Science Review, 79(04), 1079-1093.

Coussement, K., & Van den Poel, D. (2009). Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Systems with Applications, 36(3, Part 2), 6127–6134.

Davies, D. W. (1995). Defining the Commodity Channel Index. Technical Analysis of Stocks and Commodities, 13, 95-101.

de Castro, P. A. L., & Sichman, J. S. (2007). Towards Cooperation Among Competitive Trader Agents. In ICEIS (4) (pp. 138-143).

Edwards, R. D., Magee, J., & Bassetti, W. H. C. (2012). Technical analysis of stock trends. CRC Press.

Fama, E. F. (1998). Market efficiency, long-term returns, and behavioral finance. Journal of financial economics, 49(3), 283-306.

Fernandes, R. G. (2015). The Effect of Stock Characteristics on Technical Analysis Profitability: the Portuguese Stock Exchange case.

Florez-Lopez, R., & Ramon-Jeronimo, J. M. (2015). Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal. Expert Systems with Applications, 42(13), 5737–5753.

Galloppo, G. (2009). Dynamic Asset Allocation Using a Combined Criteria Decision System. Accounting & Taxation, 1(1), 29-44.

Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 2225–2236.

Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300.

Glickstein, D. A., & Wubbels, R. E. (1983). Dow Theory is alive and well!. The Journal of Portfolio Management, 9(3), 28-32.

Groenewold, N., & Kang, K. C. (1993). The Semi‐Strong Efficiency of the Australian Share Market. Economic Record, 69(4), 405-410.

Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques, Third Edition (3rd ed.). Morgan Kaufmann.

Hoffmann, A. O., & Shefrin, H. (2014). Technical analysis and individual investors. Journal of Economic Behavior & Organization, 107, 487-511.

Jensen, M. C. (1978). Some anomalous evidence regarding market efficiency. Journal of financial economics, 6(2/3), 95-101.

Kalsyte, Z., & Verikas, A. (2013). A novel approach to exploring company’s financial soundness: Investor’s perspective. Expert Systems with Applications, 40(13), 5085–5092.

Kalsyte, Z., Verikas, A., Bacauskiene, M., & Gelzinis, A. (2013). A novel approach to designing an adaptive committee applied to predicting company’s future performance. Expert Systems with Applications, 40(6), 2051–2057.

Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1), 307-319.

Ko, K. C., Lin, S. J., Su, H. J., & Chang, H. H. (2014). Value investing and technical analysis in Taiwan stock market. Pacific-Basin Finance Journal, 26, 14-36.

Kruppa, J., Schwarz, A., Arminger, G., & Ziegler, A. (2013). Consumer credit risk: Individual probability estimates using machine learning. Expert Systems with Applications, 40(13), 5125–5131.

Lam, M. (2004). Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision Support Systems, 37(4), 567-581.

Larivière, B., & Van den Poel, D. (2005). Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications, 29(2), 472–484.

Ledolter, J. (2013). Data Mining and Business Analytics with R. Hoboken, N.J.: Wiley.

Leung, J. M. J., & Chong, T. T. L. (2003). An empirical comparison of moving average envelopes and Bollinger Bands. Applied Economics Letters, 10(6), 339-341.

Lo, A. W., Mamaysky, H., &Wang, J. (2000). Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. The journal of finance, 55(4), 1705-1770.

Malkiel, B. G. (1991). Efficient market hypothesis. In The World of Economics (pp. 211-218). Palgrave Macmillan UK.

Malhotra, R., & Jain, A. (2011). Software effort prediction using statistical and machine learning methods. International Journal of Advanced Computer Science and Applications, 2(1), 145-152. (DOI) : 10.14569/IJACSA.2011.020122

Marqués, A. I., García, V., & Sánchez, J. S. (2012). Two-level classifier ensembles for credit risk assessment. Expert Systems with Applications, 39(12), 10916–10922.

Menkhoff, L., & Taylor, M. P. (2007). The obstinate passion of foreign exchange professionals: technical analysis. Journal of Economic Literature, 936-972.

Metghalchi, M., Chang, Y. H., & Garza-Gomez, X. (2012). Technical analysis of the Taiwanese stock market. International Journal of Economics and Finance, 4(1), 90.

Mills, T. C. (1997). Technical analysis and the London Stock Exchange: Testing trading rules using the FT30. International Journal of Finance &Economics, 2(4), 319-331.

Murphy, J. J. (2012). Charting made easy (Vol. 149). John Wiley & Sons.

Neely, C. J., & Weller, P. A. (2001). Technical analysis and central bank intervention. Journal of International Money and Finance, 20(7), 949-970.

Neely, C., Weller, P., & Dittmar, R. (1997). Is technical analysis in the foreign exchange market profitable? A genetic programming approach. Journal of financial and Quantitative Analysis, 32(04), 405-426.

Neftci, S. N. (1991). Naïve trading rules in financial markets and wiener-kolmogorov prediction theory: a study of" technical analysis". Journal of Business, 549-571.

Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of Statistical Analysis and Data Mining Applications .Academic Press.

Oberlechner, T. (2001). Importance of technical and fundamental analysis in the European foreign exchange market. International Journal of Finance &Economics, 6(1), 81-93.

Osler, C. L. (2003). Currency orders and exchange rate dynamics: An explanation for the predictive success of technical analysis. The Journal of Finance, 58(5), 1791-1820.

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259–268.

Poshakwale, S. (1996). Evidence on weak form efficiency and day of the week effect in the Indian stock market. Finance India, 10(3), 605-616.

Ritter, J. R., & Warr, R. S. (2002). The decline of inflation and the bull market of 1982–1999. Journal of Financial and Quantitative Analysis, 37(01), 29-61.

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. doi:10.1016/j.isprsjprs.2011.11.002

Rokach, L., & Maimon, O. (2008). Data mining with decision trees: theroy and applications. Singapore ; Hackensack, NJ: World Scientific.

Rosillo, R., De la Fuente, D., & Brugos, J. A. L. (2013). Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies. Applied Economics, 45(12), 1541-1550.

Saacke, P. (2002). Technical analysis and the effectiveness of central bank intervention. Journal of International Money and Finance, 21(4), 459-479.

Schulmeister, S. (2009). Profitability of technical stock trading: Has it moved from daily to intraday data?. Review of Financial Economics, 18(4), 190-201.

Sen, J., & Chaudhuri, T. D. (2016). Decomposition of Time Series Data of Stock Markets and its Implications for Prediction: An Application for the Indian Auto Sector. arXiv preprint arXiv:1601.02407.

Shen, K. Y., & Tzeng, G. H. (2015). Fuzzy Inference-Enhanced VC-DRSA Model for Technical Analysis: Investment Decision Aid. International Journal of Fuzzy Systems, 17(3), 375-389.

StatSoft, Inc. (2013). Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/.

Stevens, L. (2002). Essential technical analysis: tools and techniques to spot market trends (Vol. 162). John Wiley & Sons.

Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining. Boston: Pearson.

Taylor, M. P., & Allen, H. (1992). The use of technical analysis in the foreign exchange market. Journal of international Money and Finance, 11(3), 304-314.

Taylor, S. J. (1994). Trading futures using a channel rule: A study of the predictive power of technical analysis with currency examples. Journal of Futures Markets, 14(2), 215-235.

Thomsett, M. C. (2006). Getting started in fundamental analysis. John Wiley & Sons.

Tsang, W. W. H., & Chong, T. T. L. (2009). Profitability of the On-Balance Volume Indicator. Economics Bulletin, 29(3), 2424-2431.

Urquhart, A., Batten, J. A., Lucey, B. M., McGroarty, F., & Peat, M. (2015). Does Technical Analysis Beat the Market?–Evidence from High Frequency Trading in Gold and Silver. Evidence from High Frequency Trading in Gold and Silver (August 28, 2015).

Utthammajai, K., & Leesutthipornchai, P. (2015). Association Mining on Stock Index Indicators. International Journal of Computer and Communication Engineering, 4(1), 46.

Vasileiou, E. (2014). Is technical analysis profitable even for an amateur investor? Evidence from the Greek stock market (2002-12). Forthcoming in (Copur, Z., Ed.), Behavioral Finance and Investment Strategies: Decision Making in the Financial Industry, IGI Global Publishers.

Vora, M. N. (2011). Genetic Algorithm for Trading Signal Generation. In International Conference on Business and Economics Research (Vol. 1).

Wafi, A. S., Hassan, H., & Mabrouk, A. (2015). Fundamental Analysis Vs Technical Analysis in the Egyptian Stock Exchange–Empirical Study. International Journal of Business and Management Study–IJBMS, 2(2).

Waworuntu, S. R., & Suryanto, H. (2015). The Complementary Nature Of Fundamental And Technical Analysis Evidence From Indonesia. International Research Journal of Business Studies, 3(2).

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: practical machine learning tools and techniques (3rd ed). Burlington, MA: Morgan Kaufmann.

Wong, W. K.,Manzur, M., &Chew, B. K. (2003). How rewarding is technical analysis? Evidence from Singapore stock market. Applied Financial Economics, 13(7), 543-551.

Xie, Y., Li, X., Ngai, E. W. T., & Ying, W. (2009). Customer churn prediction using improved balanced random forests. Expert Systems with Applications, 36(3, Part 1), 5445–5449.

Zhang, C., & Ma, Y. (2012). Ensemble Machine Learning: Methods and Applications (2012 edition). New York: Springer.

Zhou, Q.-F., Zhou, H., Ning, Y.-P., Yang, F., & Li, T. (2015). Two approaches for novelty detection using random forest. Expert Systems with Applications, 42(10), 4840–4850.

Zumel, N., & Mount, J. (2014). Practical data science with R. Manning.




How to Cite

Emir, S., Dincer, H., Hacioglu, U., & Yuksel, S. (2016). Random Regression Forest Model using Technical Analysis Variables: An application on Turkish Banking Sector in Borsa Istanbul (BIST). International Journal of Finance &Amp; Banking Studies (2147-4486), 5(3), 85–102. https://doi.org/10.20525/ijfbs.v5i3.461