Visualizing Big Data via a Mixture of PARAMAP and Isomap

Ulas Akkucuk


Dimensionality reduction aims to represent higher dimensional data by a lower-dimensional structure. A well-known approach by Carroll, Parametric Mapping or PARAMAP (Shepard and Carroll, 1966) relies on iterative minimization of a loss function measuring the smoothness or continuity of the mapping from the lower dimensional representation to the original data. The algorithm was revitalized with important modifications (Akkucuk and Carroll, 2006). However improved, the approach still involved the need to make a large number of random starts. In this paper we discuss the use of a variant of the Isomap method (Tenenbaum et al., 2000) to obtain a starting framework, consisting of a core set of landmark points. These core set of landmark points are used to construct a rational start for running PARAMAP algorithm only once. Since Isomap is faster and less prone to local optimum problems than PARAMAP, and the iterative process involved in adding new points to the configuration will be less time consuming (since only one starting configuration is used), we believe the resulting method should be better suited to deal with large data sets, and more inclined to obtain a satisfactory solution in reasonable time.


PARAMAP, Isomap, Nonlinear Mapping, Dimension Reduction, Big Data, Data Mining

Full Text:



Al-Kassab, J., Ouertani, Z. M., Schiuma, G., & Neely, A. (2014). Information visualization to support management decisions, International Journal of Information Technology & Decision Making, 13(2), 407-428. DOI: 10.1142/S0219622014500497

Akkucuk, U. (2004). Nonlinear Mapping: Approaches Based on Optimizing an Index of Continuity and Applying Classical Metric MDS to Revised Distances. Doctoral Dissertation, Rutgers University, Newark, NJ.

Akkucuk, U., (2011). A Study on the Competitive Positions of Countries Using Cluster Analysis and Multidimensional Scaling, European Journal of Economics Finance and Administrative Sciences, 37, 17-26.

Akkucuk, U. (2014). Application of Statistical Visualization Tools on Global Competitiveness Data. In Hasan Dinçer and Ümit Hacıoğlu (Eds.), Global Strategies in Banking and Finance (14-27). IGI-Global: Hershey. DOI: 10.4018/978-1-4666-4635-3.ch002

Akkucuk, U. & Carroll J. D. (2006). PARAMAP vs. Isomap: A Comparison of Two Nonlinear Mapping Algorithms. Journal of Classification, 23, 221-254. DOI: 10.1007/s00357-006-0014-2

Akkucuk, U. & Carroll, J. D. (2010). Nonlinear Mapping Using a Hybrid of PARAMAP and Isomap Approaches. In Hermann Locarek-Junge and Claus Weihs (Eds.), Classification as a Tool for Research (371-380). Springer: Berlin-Heidelberg-New York. DOI: 10.1007/978-3-642-10745-0_40

Akkucuk, U., Carroll, J. D., & France, S. (2013). Visualizing Data in Social and Behavioral Sciences: An Application of PARAMAP on Judicial Statistics. In Berthold Lausen, Dirk Van den Poel and Alfred Ultsch (Eds.), Algorithms from and for Nature and Life (147-154). Springer: Berlin-Heidelberg-New York . DOI: 10.1007/978-3-319-00035-0_14

Akkucuk, U. & Artemel, M. N. (2016). Patent Data Visualization: A Regional Study, International Journal of Research in Business and Social Science, 5(3), 66-79. DOI:

Akkucuk, U., & Kucukkancabas, S. (2007). Analyzing the Perceptions of Turkish Universities Using Multidimensional Scaling (MDS) Analysis, Bogazici Journal, 21, 125-141.

Balasubramanian, M., Schwartz, E. L., Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2002), The Isomap Algorithm and Topological Stability, Science, 295, 7a. DOI: 10.1126/science.295.5552.7a

Desarbo, W. S., Carroll, J. D., Clark, L. A., & Green, P. E. (1984). Synthesized Clustering: A method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika, 49, 57-78. DOI: 10.1007/BF02294206

France, S. L. & Carroll, J. D. (2011). Two-way multidimensional scaling: A review, Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 41(5), 644-661. DOI: 10.1109/TSMCC.2010.2078502

France, S. L. & Ghose, S. (2016). An Analysis and Visualization Methodology for Identifying and Testing Market Structure, Marketing Science, 35(1), 182-197. DOI: 10.1287/mksc.2015.0958

Gracia, A., González, S., Robles, V., & Menasalvas, E. (2014). A methodology to compare Dimensionality Reduction algorithms in terms of loss of quality, Information Sciences, 270, 1 – 27. DOI:10.1016/j.ins.2014.02.068

Morrison, A., Ross, G., & Chalmers, M. (2002). A hybrid layout algorithm for sub-quadratic multidimensional scaling. In P. C. Wong & K. Andrews (Eds.), IEEE Symposium of Information Visualization. (pp. 152-158). Silver Spring, MD: IEEE Computer Society. DOI: 10.1109/INFVIS.2002.1173161

Morrison, A., Ross, G., & Chalmers, M. (2003). Fast multidimensional scaling through sampling, springs and interpolation. Journal of Information Visualization, 2, 68-77. DOI: 10.1057/palgrave.ivs.9500040

Shepard, R. N. & Carroll, J. D. (1966). Parametric representation of nonlinear data structures. In P. R. Krishnaiah (Ed.). Multivariate Analysis , (pp. 561- 592). New York, NY: Academic Press.

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, 290, 2319-2323. DOI: 10.1126/science.290.5500.2319


  • There are currently no refbacks.

Copyright (c) 2016 International Journal of Decision Sciences & Applications- IJDSA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Decision Sciences & Applications- by Umit Hacioglu is licensed under aCreative Commons Attribution-NonCommercial 4.0 International License.